

Helping to keep the lights on, businesses running and communities strong®

2013 Economic Planning Study Kickoff

Erik Winsand, ATC Economic Planning February 26, 2013

atcllc.com

Introduction

- Process Overview and Timeline
- 2013 Futures Development
 - Historical Process
 - Proposed Process
- MISO MTEP 13 Futures Assumptions
- Next Steps

Process Overview and Timeline

ATC Economic Project Planning

- During February, we hold an initial stakeholder meeting to review the market congestion summary and potential fixes and to discuss economic study scenarios, drivers, ranges, and assumptions.
- By March 1, we work with stakeholders to request and prioritize new/other economic studies and recommend study assumptions.
- By April 15 we identify preliminary areas of economic study, study assumptions and models and solicit further comments from stakeholders.
- By May 15 we finalize areas of economic study, study assumptions and models to be used in analysis.
- By November 15 we provide a summary of the results of the economic analyses to our stakeholders.

2013 Futures Development

ATC Historical Process - Prior to 2012

- Develop ATC specific Futures Matrix
- Modify MISO PROMOD models to match ATC assumptions
- Process originated prior to expanded stakeholder involvement in development of MISO MTEP models

2013 Proposed Process

- Do not create an ATC specific Futures Matrix
- Utilize the MISO MTEP 13 models and Futures
- Review MISO models and provide updates as necessary
- Ensures greater alignment with MISO process

MISO MTEP 13 Futures Definitions

Future	Narrative Narrative
Business as Usual	The Business as Usual future is considered the status quo future and continues current economic trends. This future models the power
	system as it exists today with reference values and trends. Renewable portfolio standards vary by state and 12.6 GW of coal unit retirements will be modeled.
Robust Economy	The Robust Economy future is considered a future with a quick rebound in the economy. This future models the power system as it
	exists today with historical values and trends for demand and energy growth. Demand and energy growth is spurred by a sharp rebound in manufacturing and industrial production. Renewable portfolio standards vary by state and 12.6 GW of coal unit retirements will be modeled.
Limited Growth	The Limited Growth future models a future with low demand and energy growth rates due to a very slow economic recovery and impacts
	of EPA regulations. This can be considered a low side variation of the BAU future. Renewable portfolio standards vary by state and 12.6 GW of coal unit retirements will be modeled.
Generation Shift	The Generation Shift future considers a future with continued impact from the economic downturn on demand and energy growth rates.
	This future models a changing baseload power system due to many power plants nearing the end of their useful life. In addition to the
	12.6 GW of coal unit retirements modeled as a minimum in all futures, this future will also model the retirement of each generator in the
	year that it reaches 50 years of age during the study period. Renewable portfolio standards vary by state.
Environmental	The Environmental future considers a future where policy decisions have a heavy impact on the future generation mix. Mid-level demand
	and energy growth rates will be modeled. An even greater EPA presence will be represented through a carbon tax and state-level
	renewable portfolio standard mandates and goals will be modeled. 23 GW of coal unit retirements will be modeled.

MISO MTEP 13 Futures Definitions

Demand Response Program	Description
Commercial and Industrial (C&I) Curtailable/Interruptible Programs	Curtailable programs are those in which a customer commits to curtailing a certain amount of load whenever an event is called in exchange for lower energy price. Interruptible programs are programs in which a customer agrees to be interrupted in exchange for a fixed reduction in the monthly demand billing rate. If a customer does not reduce their load per their commitment, the utility may levy a penalty.
C&I Direct Load Control (DLC)	These programs are where the C&I customer agrees to allow the utility to directly control equipment such as an air conditioner or hot water heater during events in exchange for a payment of some type (a flat fee per year or season and/or a per-event payment). A controlling device such as a switch or programmable thermostat is required.
C&I Dynamic Pricing	Dynamic pricing programs are structured so that customers have an incentive to reduce their usage during times of high energy demand or high wholesale energy prices. Under a critical peak pricing program, the customer pays a higher electricity rate during critical peak periods and pays a lower rate during off-peak periods. Often times, a critical peak pricing rate is combined with a time-of-use rate. Under a peak-time rebate program, the customer receives an incentive for reducing load during critical peak periods, and there is no penalty if the customer chooses not to participate.
Residential DLC	These programs are where the residential customer agrees to allow the utility to directly control equipment such as an air conditioner or hot water heater during events in exchange for a payment of some type (a flat fee per year or season and/or a per-event payment). A controlling device such as a switch or programmable thermostat is required.
Residential Dynamic Pricing	Dynamic pricing programs are structured so that customers have an incentive to reduce their usage during times of high energy demand or high wholesale energy prices. Under a critical peak pricing program, the customer pays a higher electricity rate during critical peak periods and pays a lower rate during off-peak periods. Often times, a critical peak pricing rate is combined with a time-of-use rate. Under a peak-time rebate program, the customer receives an incentive for reducing load during critical peak periods, and there is no penalty if the customer chooses not to participate.

MISO MTEP 13 Futures Definitions

Energy Efficiency Program	Description
Residential Energy Efficiency	Appliance incentives/rebates; Appliance recycling; Lighting initiatives; Low income programs; Multifamily programs; New construction
Programs*	programs; Whole home audit programs; All other residential programs
Commercial and Industrial Energy	Lighting programs; Prescriptive rebates; Custom incentives; New construction programs; Retrocommissioning programs; All other C&/
Efficiency Programs*	programs

^{*} Note: Both Residential and C&I EE programs are split into low and high cost blocks for EGEAS modeling purposes; the cutoff is \$1,000/kW

MISO MTEP 13 Futures Matrix

	Uncertainties																														
						Ca	pital	Cos	sts						Demand and			Fuel Cost			Fuel					Othe					
			ı	ı	ı											Ene	rgy			(S	tartir	ng	Esc	alati	ons		Costs	3	Va	riabl	es
Future	Coal	/ / /)33	CT	Nuclear	Wind Onshore	၁၁၅၊	SOO /M OOSI	SO // CCS	Pumped Storage Hydro	Compressed Air Energy	Photovoltaic	Biomass	Conventional Hydro	Wind Offshore	Demand Response Level	Energy Efficiency Level	Demand Growth Rate	Energy Growth Rate	Natural Gas Forecast	li0	Coal	Uranium)ijo	Coal	Uranium	² 0S	×ON	CO ₂	Inflation	Retirements	Renewable Portfolio Standards
Business as Usual	M	Μ	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	L	L	L	M	L	M
Robust Economy	M	M	M	Μ	M	M	Δ	Μ	Μ	Ν	M	V	M	М	M	Z	I	I	I	М	М	М	Η	Ι	I	L	L	П	Η	L	M
Limited Growth	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	L	L	L	M	L	M	L	L	L	L	L	L	L	L	M
Generation Shift	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	М	L	L	M	L	L	M	L	L	L	L	L	L	L	M	M
Environmental	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	Н	L	L	Η	M	M	M	L	L	M	M	Н	Н

MTEP13 FUTURES MATRIX											
Uncertainty	Unit	Low(L)	Mid (M)	High (H)							
	New Generation Capital Costs ¹										
Coal	(\$/KW)	2,641	2,934	3,668							
CC	(\$/KW)	921	1,023	1,279							
СТ	(\$/KW)	608	676	845							
Nuclear	(\$/KW)	4,973	5,525	6,906							
Wind-Onshore	(\$/KW)	1,993	2,214	2,768							
IGCC	(\$/KW)	3,406	3,784	4,730							
IGCC w/ CCS	(\$/KW)	5,939	6,599	8,249							
CC w/ CCS	(\$/KW)	1,886	2,095	2,619							
Pumped Storage Hydro	(\$/KW)	4,759	5,288	6,610							
Compressed Air Energy Storage	(\$/KW)	1,164	1,294	1,617							
Photovoltaic	(\$/KW)	3,486	3,873	4,841							
Biomass	(\$/KW)	3,703	4,114	5,143							
Conventional Hydro	(\$/KW)	2,642	2,936	3,670							
Wind-Offshore	(\$/KW)	5,607	6,230	7,788							

¹ All costs are overnight construction costs in 2013 dollars

M	TEP13 F	UTURES I	MATRIX								
Uncertainty Unit Low (L) Mid (M) High (H											
Demand and Energy											
Demand Growth Rate ²	%	0.50%	1.00%	1.50%							
Energy Growth Rate ³	%	0.60%	1.20%	1.80%							
Demand Response Level	%		MECT Estimates ⁴								
Energy Efficiency Level	%		MECT Estimates ⁴								

MTEP13 FUTURES MATRIX									
Uncertainty Unit Low (L) Mid (M) High (I									
		Natural Gas							
Natural Gas ⁵	(\$/MMBtu)	See "Natural Gas" Tab for Low / Mid / High forecasts							
	Fuel Pr	ices (Starting Values)							
Oil	(\$/MMBtu)	Powerbase default -20%	Powerbase default ⁶	Powerbase default + 20%					
Coal	(\$/MMBtu)	Powerbase default -20%	Powerbase default ⁷	Powerbase default + 20%					
Uranium	(\$/MMBtu)	0.91	1.14	1.37					

⁵ Prices reflect the Henry Hub natural gas price

⁶ Powerbase default for oil is \$19.39/MMBtu

⁷ Powerbase range for coal is \$1 to \$4, with an average value of \$1.69/MMBtu

MTEP13 FUTURES MATRIX											
Uncertainty Unit Low (L) Mid (M) High (H)											
Emissions Costs											
SO ₂	(\$/ton)	0	0	500							
				NO _x : 500							
NO _x	(\$/ton)	0	0	Seasonal NO _x : 1000							
CO ₂	(\$/ton)	0	50	N/A							

MTEP13 FUTURES MATRIX										
Uncertainty	Unit	Low(L)	Mid (M)	High (H)						
	(Other Variables								
Inflation	%	1.5	2.5	4.0						
Retirements	MW	12,600 MW	12,600 MW + 8,100 MW age-related retirements = 20,700 MW ⁸	23,000 MW						
Renewable Portfolio Standards	%	Reduced state mandates	State mandates only	State mandates and goals						

⁸ 8,100 MW value is based on MTEP12 database

Next Steps

- Project / Analysis Development
 - Review of Congestion
 - Stakeholder Feedback
- 2013 Futures Development
 - Continued Review of MISO MTEP 13 Development
 - Review of MISO PROMOD Models
- Analysis of Projects
 - Study Years
 - Futures
- Timelines
 - April 15, 2012: Define Preliminary Assumptions
 - May 15, 2012: Finalize Assumptions
 - November 15, 2012: Provide Analysis Update

Questions?

- ATC Economic Planning
- Dale Burmester
 - dburmester@atcllc.com
 - **-** (608) 877-7109
- Erik Winsand
 - ewinsand@atcllc.com
 - (608) 877-3551

