ATC Stakeholder Update 2019 PROMOD Study Assumptions

Tom Dagenais Todd Tadych

ATC Economic Planning 7-10-09

Agenda / Introduction

- MISO RGOS Model Description
- MISO RGOS Model History and Background
- MISO RGOS Model Update
- New Generation Assumptions
- Transmission Assumptions
- Modeling Demand Response
- Schedule and Next Steps

MISO RGOS Model Description

- Per RGOS scope, Reference and Gas only Futures to be studied
- PROMOD model is an MTEP 09 vintage
- The PowerBase database (containing the generation, load, fuel, etc information) is the same as used in JCSP study
- 2019 PROMOD case uses the MTEP09 2019 power flow model

MTEP 09 General Assumptions

- Future resource forecasting based on EGEAS for next 20 years
- Resource forecast sited based on methodology developed by stakeholders and MISO
- Transmission topology from latest power flow models
- Model includes entire eastern interconnection, except Florida, NEISO and Hydro Quebec
- Event File based on NERC and MISO Book of Flowgates

MTEP 09 Wind Generation Assumptions

- Reference and Gas Futures include RPS wind requirements
- Hourly wind profiles from National Renewable Energy Lab (NREL)
 - Wind profiles were created for 2004, 2005, and 2006
 - MISO & ATC 2019 analysis will use the 2005 profiles
 - Significant increase in granularity as compared to previous models
 - Simulated hourly wind output videos can be seen at: <u>www.jcspstudy.org</u>

- Indicative Transmission Overlays will eventually be developed for two scenarios:
 - UMTDI Scenario A
 - UMTDI Scenario B
- Only incremental differences between A & B
- MISO is analyzing Scenario B first (ATC starting point)

Scenario A

7

The nine Illinois zones will be used for the 15GW portion of the study. For the 25 GW study, only four zones will be used; the four zones being IL-B, IL-C, IL-D and IL-K. The zones IL-K, IL-L and IN-A are in the Midwest ISO footprint while the other Illinois zones are in the Commonwealth Edison (PJM) footprint.

Scenario B

The nine Illinois zones will be used for the 15GW portion of the study. For the 25 GW study, only four zones will be used; the four zones being IL-B, IL-C, IL-D and IL-K. The zones IL-K, IL-L and IN-A are in the Midwest ISO footprint while the other Illinois zones are in the Commonwealth Edison (PJM) footprint.

MISO 15 GW Reference Case – Generation Capacity vs. Load %

	2019 Max Capacity vs	2019Total Max	2019 Non-Coincident
Area	Load* (%)	Capacity* (GW)	Peak Demand (GW)
MISO - All	20.6%	160.5	133.1
MISO - Central	25.0%	56.8	45.5
MISO - East	20.2%	53.4	44.4
MISO - West	16.4%	50.4	43.3
MRO - Non-MISO	20.9%	18.2	15.1
ComEd	-1.1%	29.0	29.3
ATC	22.9%	20.4	16.6

*Wind Capacity is calculated at 15% for Gen vs. Load %

MISO RGOS Model Update

- ATC has procured the finalized MISO PROMOD data for the 2019 15 GW Reference Case
- ATC is anticipating receipt of the MISO PROMOD data for the 25 GW Reference Case by the end of July
- The timeline and development of the 45 GW Case is currently uncertain
- ATC has begun work on 2019 PROMOD model development

New Generation Assumptions

15 GW Reference Case:2019 total wind capacity and average capacity factors by state

		Straight Average Annual Capacity Factor
Area / State	Total Capacity (MW)	(%)
North Dakota / South Dakota	4,581	39.7%
Minnesota	5,585	38.8%
Iowa	5,847	37.8%
Illinos	6,358	33.8%
Wisconsin	3,238	32.4%
Michigan	168	31.6%

New Generation Assumptions

15 GW Reference Case:2019 total wind capacity and average capacity factors by region

		Straight Average
		Annual Capacity Factor
Area / State	Total Capacity (MW)	(%)
MISO Wide (includes ATC)	15,257	36.7%
MISO - Central	3,015	33.2%
MISO - East	398	32.3%
MISO - West (includes ATC)	11,845	37.5%
ATC Only	3,228	32.5%
MRO - Non-MISO	7,499	37.9%
ComEd	3,350	34.6%
PJM (includes ComEd)	5,126	30.8%

New Generation Assumptions

- Interruptible and Direct Load Control pricing
 - ATC 2008 Value: \$783.83 (\$2019)
 - MISO 2009 Value: **\$783.83** (\$2019)
 - Proposed ATC 2009 Value: \$648.62 (\$2019)*
- What is reasonable?

*Lower 2009 projection is based on lower projected natural gas costs

Transmission Assumptions

MISO indicative plans (scenario B)

- 345 kV overlay, 15 GW wind future
 - Slow Growth future
- 345 kV overlay, 25 GW wind future
 - High Retirements future
 - High Environmental future*
 - Fuel & Investment Limitations future
- 765 kV overlay, 15 GW wind future
 - Not used
- 765 kV overlay, 25 GW wind future
 - Robust Economy future
 - DOE 20% Wind future*

Proposed Adjustments to Overlay

MERICAN TRANSMISSION COMPANY

IERICAN TRANSMISSION COMPANY

ERICAN TRANSMISSION COMPAN

Transmission Assumptions

ATC TYA modifications

- Powerflow model for ATC internal footprint will be updated
- All planned and proposed transmission projects through 2019 will be included

Transmission Assumptions

Event file updates (constraints)

- Verify ratings of ATC elements
- Increase ratings on 1st tier constraints by up to 50%
 - Assumption is that these issues will be fixed by owner of equipment
 - Do not modify if expected to be heavily impacted by projects under analysis for this study
- Remove constraints 2+ tiers away from ATC footprint
- Use the PROMOD Analysis Tool to identify new events within ATC and 1st tier to be added to event file
- Add generator contingencies for selected units

Modeling Demand Response

Demand Response Units

- Added to analysis in 2008
- Units serve to offset loads and model DR action
- DR unit added at each ATC footprint load of 5 MW or more
- Modeled at same MW level as load
- High dispatch cost of \$1000/MWH in 2008
- Succeeding in eliminating "buying through" of constraints

Modeling Demand Response

2009 Changes for Demand Response Units

- DR units modeled at 50% of MW load level
- Utilize increasing cost curves to simulate resistance to DR
 - 0 to 20% of load level
 - Recent FERC report claims 20% reduction in peak load is achievable by 2020 through Demand Response programs
 - Cost will be higher than typical baseload plant costs but lower than typical peaker plant costs in order to reduce peak load
 - 20 to 40% of load level
 - Cost will be higher than typical peaker plant costs
 - Simulates increased customer reluctance to reduce load
 - 40 to 50% of load level
 - Cost will be very high (~ \$1000/MWH)

ATC Schedule and Next Steps

Next steps...

- Compile stakeholder feedback
- Finalize assumptions
- Complete model development
- Perform analysis
- Communicate results

ATC Schedule and Next Steps

Plan and schedule for 2009

- By Aug 31 Complete PROMOD model development
 - Dependent upon receiving 25 GW case from MISO
- By **Sep 30** Complete PROMOD study runs
- By Oct 31 Complete post-processing and analysis
- By Nov 15 ATC posts final results
 - Update on progress will be posted if final results not available

Questions?

ATC Economic Planning

- Jamal Khudai
 - jkhudai@atcllc.com
- Tom Dagenais
 - tdagenais@atcllc.com
- Arash Ghodsian
 - aghodsian@atcllc.com
- Todd Tadych
 - ttadych@atcllc.com
- Erik Winsand
 - <u>ewinsand@atcllc.com</u>

