2023 10-Year Assessment Preliminary Study Design

Stakeholder and Customer Webcast

PRESENTED BY

System Planning

November 7, 2022

Purpose

- Summarize ATC's project development processes
- Solicit input for the 2023 Assessment Study Design
- Solicit input on any new Public Policy Requirements

ATC's project development processes

- Local Transmission Planning
 - Asset Renewal
 - Interconnections
 - Network
 - Planning Reliability Criteria
 - Sectionalizing Guidelines
 - Economic Benefits
- Consider Other Solutions (Non-Transmission Alternatives)
- Regional Planning
- Public Policy Requirements

Timeline

atcllc.com

ATC project identification process

ATC project status definitions

In-Service

atcllc.com

Asset renewal program objectives

- Safety public and worker
- Minimize total life cycle cost [Net Present Value of Revenue Requirements (NPV RR) from customer cost/rate perspective]
- Compliance
- Manage risk
- Reliable performance maintain or improvement
- Environmental performance improvements
- Coordination with Stakeholders

Replacement is based on...

- Safety public and worker
- Condition tests, maintenance costs/risks
- Obsolescence part availability, factory support, craft labor expertise with this specific equipment, available spares
- Utilization application, system changes
- Criticality consequence of failure, outage impacts
- Costs maintenance and replacement
- Environmental PCB contamination, oil volumes and containment, proximity to waterways, SF6 gas leaks, lead, mercury, environmental compliance/risks
- Compliance NERC, CIP, EPA, State DNR
- Other Considerations test frequency, on-line monitoring, test information available, fleet size, common fleet issues, maintenance history, failure mode, industry experience

Asset renewal considerations

- Is the asset still needed?
 - Assess area needs
 - Obtain cross-functional and distribution provider input
 - Consider removal of lines/equipment
 - Consider system reconfiguration
 - Other alternatives
- What ratings and performance are needed?

Asset Renewal T-line Project Example

- Portage Dam Heights 69kV Rebuild (Y-16)
 - Project Background
 - Approximately 25 of miles of rebuild
 - Past Needs
 - Condition and Performance Issues
 - Replace 1910's vintage lattice structures
 - Outages: One of the most frequently outage ATC lines
 - ✓ On average about 4 outages per year
 - \checkmark Need to update to avian friendly design
 - Improved lightning performance
 - Current status
 - Project went in-service Fall of 2017
 - One momentary outage in 2021 due to lightning above design (69kV – 45kA design, actual strike 192kA)

Lancaster Power Transformer – Life Cycle

- Allis Chalmers Power Transformer built in 1954
- Life Extension 2015
 - High Voltage Bushings
 - Load Tap Changer bypass
 - Oil Seal Gaskets
- Planned Retirement 2025 after LDC distribution buildout

Interconnections

• G-T

MISO Attachment X and Y Processes

• D-T

 Collaborate with distribution providers through Load Interconnection Request Form (LIRF) and BVP process

• T-T

Collaborate with other Transmission Owners

Network planning objectives

- Compliance with North American Electric Reliability Corporation (NERC) regional and local criteria
- Best Value Planning (BVP) process
- Customer involvement
- Address Public Policy requirements
- Maintain or improve the adequacy and reliability of the electric transmission system

Planning Criteria

- NERC Standards, particularly <u>TPL-001, Version 5</u>
- ATC Planning Criteria
 - Consists of criteria and assessment practices
 - <u>http://www.atc10yearplan.com</u> (About tab)
 - Current versions: Planning Criteria v22.1& Planning Assessment Practices v22.1
 - Planning Criteria v22 & v22.1
 - v22 (June 2022)
 - Rewritten "Steady State Criteria and Implementation" in the tabular format
 - ✓ Non-Consequential load shed not allowed in-between P6 event
 - v22.1 (September 2022)
 - ✓ TPL-001-5 compatibility related edits to P5, known outage and long lead time equipment
 - Added Resource Facility Requirements Section: IBR Reactive Power Design Capability, IBR Momentary Cessation, IBR Power Priority Mode, IBR Performance Requirements
 - ✓ Added IBR EMT Model Requirements Section and Verification Process
 - ✓ Updated Voltage Fluctuation and Flicker and Harmonic Voltage and Current Distortion Sections

Planning Criteria

- Planning Assessment Practices v22 & v22.1
 - v22 (June 2022)
 - Updated Wind Generation Dispatch Methodology and Solar Generation Dispatch Methodology
 - ✓ Updated Non-BES Generating Unit Stability
 - ✓ Updated Generator Interconnection Studies section
 - v22.1 (September 2022)
 - ✓ Update Dynamic Load Modeling
 - ✓ Update Multiple Contingency Planning
 - ✓ Update Other ATC Interconnection Studies and Considerations
- Sectionalizing Guidelines
 - Developed with distribution providers early in ATC's history
 - <u>http://www.atcllc.com/wp-content/uploads/2017/12/Load-Interconnection-Guide-Rev-7-121517-Pub.pdf</u> (Sections 3.6.1-3.6.2)

2022 studies and assumptions

- Preliminary 2022 Load Forecast Confirmation and MTEP23 Support Studies
- Modeling Assumptions
 - Model Years
 - Load
 - Generation
 - No Load Loss Allowed Contingency Analysis
- Additional Studies

Preliminary load forecast and MTEP23 support studies

- Initial screening (reduced generator reactive capability)
 - Summer peak (5 and 10 year models)
 - 2022 load forecast
 - 2022 TYA outside world (2021 MMWG cases)
- To confirm 2022 Load Forecast and support MTEP23 database development
 - No load loss allowed contingencies
 - Completed August 2022

2023 TYA model years

- 2023 (As-planned)
- 2024
- 2028
- 2033
- All models will likely be completed by the Spring of 2023

2022 Load Forecast- Historical

- Requested October 30, 2022
 - ATC's 2022 summer peak hour
 - ATC's 2021-2022 winter peak hour
 - Light load
 - Shoulder load
- Requested by November 1, 2022.
- Compile, review, and add to the existing load databases

2022 Expected forecast for TYA 2023

- Requested LDC forecasts in February 2022
 - 11 years per D-T IA
 - Consistent with resource planning forecast
 - Expected (50/50 probability)
- Received in April 2022
- ATC compares forecasts to previous forecasts and historic data
 - Notable differences are confirmed with the LDCs and revised if needed
 - Finalized copy of forecast provided to LDCs in August 2022
 - Forecasts incorporated into the 2023 TYA to plan the system

ATC 2022 Load Forecast Comparison Comparisons of ATC TYA Forecasts

Load forecast trends, (Continued)

	ATC Load (MW)		
Model	2020	2021	2022
	Assessment	Assessment	Assessment
Year 1	12,600	12,700	12,800
Summer Peak			
Year 5	+200	+300	+100
Summer Peak			
Year 10	+400	+400	+300
Summer Peak			
Year 5 Shoulder	9,100	9,300	9,100
Year 10 Shoulder	+100	+200	+100

Generation modeling

- Existing generator data
 - Annual updates requested from Generator Owners (GOs) in Q3
- Generation additions
 - Only add generators with signed interconnection agreements (IAs)
 - Additions modeled at MISO Facility study location
- Generation retirements
 - Generators with a completed MISO Attachment Y are modeled as retired, unless there is a System Support Resource (SSR) agreement
- Under intact system and outage conditions
 - Generators are limited to:
 - 90% of maximum reactive power output and
 - 90% of maximum reactive power consumption

Generation dispatch

- Local Balancing Area (LBA) merit order dispatch:
 - Used in Assessment's summer peak and shoulder models.
 - Provided by LBAs
- ATC-wide merit order dispatch:
 - Used in minimum load models
 - ATC-wide merit order dispatch determined using PROMOD
- Generators without scheduled transactions:
 - If they have signed IAs, generator included in the host LBA.

No load loss allowed contingency analysis

Peak

- 1, 5, and 10 year out models
- Shoulder (firm)
 - 5 and 10 year out models
 - 70% load except for Zone 2 (90% load) and northern Zone 4 (80% load)
 - Shoulder rating methodology
- Minimum load
 - 1 and 5 year out model
 - 40% load, may be adjusted based on analysis of historical loads

Additional network planning studies

- Load Loss Allowed
- Existing Generator Stability Reviews
- Annual Fault Study
- Sensitivity Studies

Long Range Transmission Plan (LRTP)

- MISO led initiative, under the Reliability Imperative
 - Transmission solutions to provide reliable and economic energy delivery for a reliable energy future
- 4 Tranches planned
 - Tranche 1
 - Approved by the MISO Board retroactively to MTEP21 in 2022
 - Portfolio of 18 projects for \$10.3 B
 - ATC ownership share in 3 projects
 - Tranche 2
 - Under development and study, ATC actively participating
- Latest information available at <u>MISO's LRTP Page</u>

Projects Flow from the TYA to MTEP

- Projects developed in the 2022 TYA process will be included in the MTEP23 process a list of those projects can be found in the <u>2022 TYA Project List</u>
- Projects that may develop subsequent to the 2022 TYA process would be included on the project list and will be submitted into MTEP23.
- MISO Active Project List

MTEP23 - Summary

2

Appendix A Projects

- Count: 32
- Total: \$349,299,597
- New Appendix B Projects
 - Count: 9
 - Total: \$ 298,720,000
 - + 4 programs (2025)

Remaining Appendix B Projects

- Count: 9
- Total: \$143,700,000

Non-Transmission Alternatives (NTAs)

- ATC and MISO work together in the TYA and MTEP processes to provide Stakeholders an opportunity to provide NTA Feedback on Projects
- MISO will post a list of NTA eligible projects as part of their Subregional Planning Meeting (SPM) #1, in January of 2023.
 - MISO will accept stakeholder project alternatives through May 31, 2023.
 - Best candidates for NTA consideration are MTEP Appendix B and Target Appendix B projects.
 - Stakeholders should submit alternatives to MISO's MTEP SPM contact, who is Greg Plauck.

Regional planning

- MTEP
- MISO's Coordinated Seasonal Assessments
- Reliability First's (RF's) Seasonal Assessments

Public policy requirements

- Follow MISO Tariff (Attachment FF) Processes
- Previously identified requirements
 - State Renewable Portfolio Standards (RPSs)
 - EPA regulations
 - State mandates and goals for energy efficiency (EE) and demand side management (DSM) programs
- We are asking for any feedback on whether there are additional public policy requirements we need to be made aware of.

Schedule

- Expected Load Forecast Review complete August 2022
- Preliminary MTEP23 Support Study Done
- Post 2023 TYA Preliminary Study Design Presentation Done
- Stakeholder Preliminary Study Design Meeting November 7, 2022
- Stakeholder Study Design Comments Due November 30, 2022
- Study Design Completion December 2022
- Preliminary Needs Meeting March 2023
- Preliminary Solutions Meeting May 2023
- Document and Publish October 2023

Thank you for participating

To provide solicited comments or for more information, please contact:

Allison Bartz (<u>abartz@atcllc.com</u>) or Ted Weber (<u>tweber2@atcllc.com</u>)

by November 30, 2022

