# 2021 10-Year Assessment Preliminary Needs

Stakeholder and Customer Webcast

PRESENTED BY

Chris Hagman, Heather Andrew, Scott Adams, Matt Falkowski & David Smith

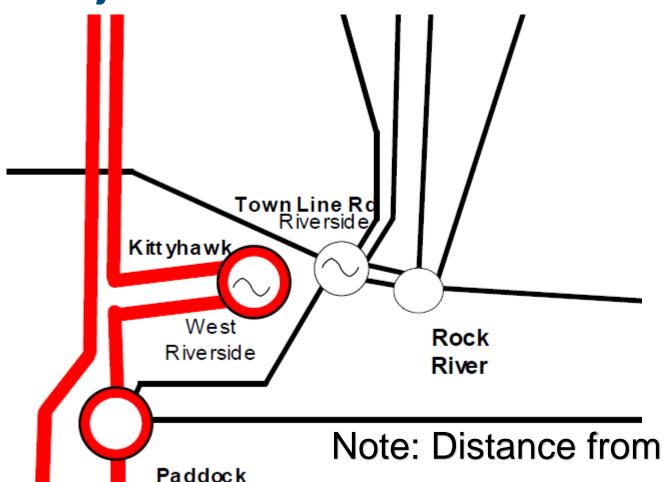


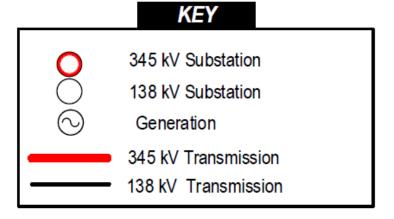
# Purpose

- Solicit Input on Needs
  - Network/System Planning
  - Generation Interconnection/Generation to Transmission (G-T) and Distribution to Transmission (D-T)
  - Asset Renewal
  - Communications
- Solicit Input on Public Policy Driven Needs
- Summarize Next Steps

# Meeting Protocol

- Please submit questions via the chat function.
- When responding to questions, moderators will repeat them and identify the person asking them.
  - May postpone responding if questions are addressed later in the presentation or not respond if out of scope.
- Do not need to "raise your hand".
- Because of the number of people participating, Roll Call will not be taken but "Participants" can be seen in Teams.
- All lines are muted.


# Changing Landscape


- Project needs are shifting.
  - Reduced need for new load-growth driven projects.
  - Both the G-T and D-T queues are large.
  - Deteriorating infrastructure can jeopardize reliability.
    - Asset Renewal addresses these risks.
  - Telecommunications risks:
    - Maintenance of older telephones lines not a priority.
    - Older 3<sup>rd</sup> party communication pathways may be less secure.
      - ✓ ATC's Optical Ground Wire (OPGW) network addresses these issues.
      - ✓ Our distribution customers can also use ATC's OPGW network.

# Rock County Project

- High West to East bias
- Very few 345/138 kV transformers
- Key Generation Changes
  - Kittyhawk West Riverside Addition 732 MW
  - Edgewater 5 Retirement (formal request) 400 MW
  - Rock River Retirement 170 MW
  - Sheepskin Retirement 40 MW
  - Uncertain Generation changes
    - DPP Renewable Additions
    - Oak Creek Retirements (announced) 995 MW
    - Columbia 1 and 2 Retirements (announced) 1,145 MW

**Project Area** 





Note: Not to scale

Note: Distance from Kittyhawk Substation to Rock River Substation is 1 mile

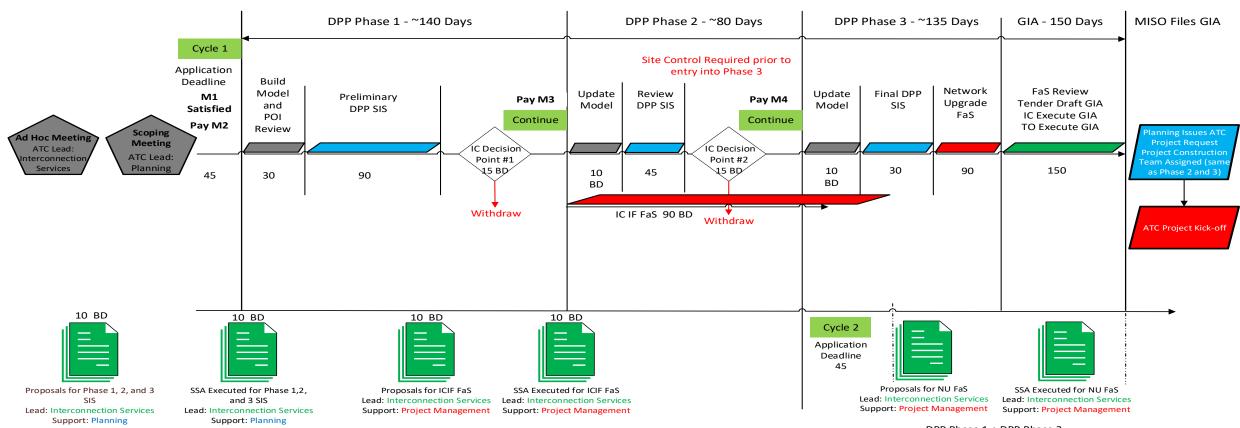
# Next Steps

- Finish Alternative Development (Early March)
- Develop scopes and obtain cost estimates (March)
- Cross-functional team recommendation (Mid-March)
- Submit Project to MTEP21 App A (Early May)
- West Riverside as-built stability analysis (TBD)
  - Confirm Final design

# Changing Landscape

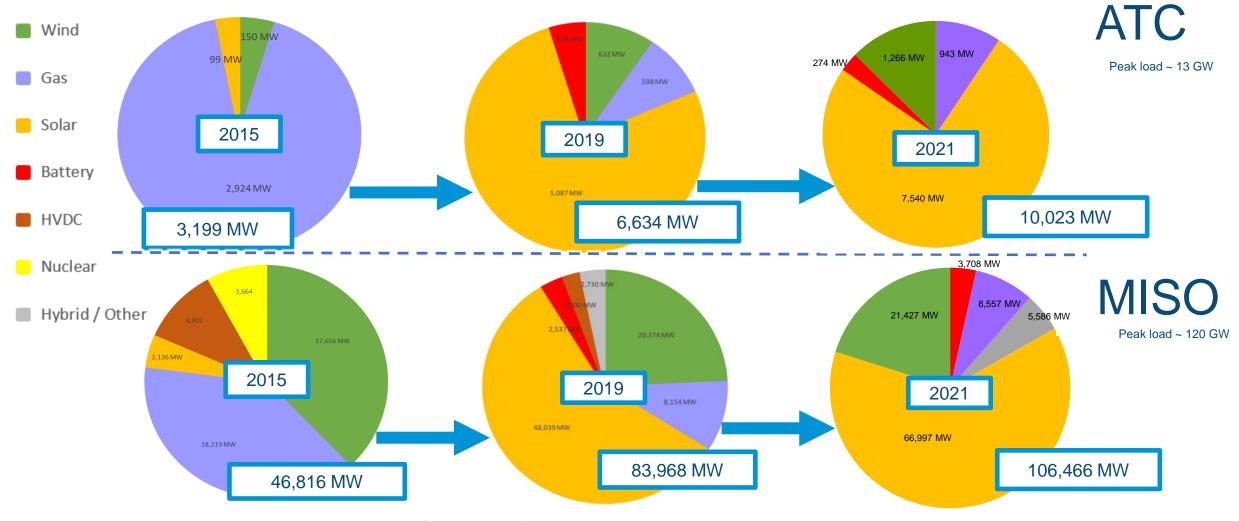
- Network/System Planning Needs
  - New potential needs under intact conditions and single contingencies
    - Sunset Point-Bowen Street (Oshkosh Area--P2.1 contingency)
    - High intact system (P0) voltages and single contingency (P1) low voltage limitations at the Presque Isle, National, Tilden, Munising and other buses in the north central U.P.
  - However, if much of the G-T queue is developed, more reliability projects may be needed in the future.

 Presentation concentrates on the current areas of largest need, i.e. on G-T, D-T, Asset Renewal, and Communications.

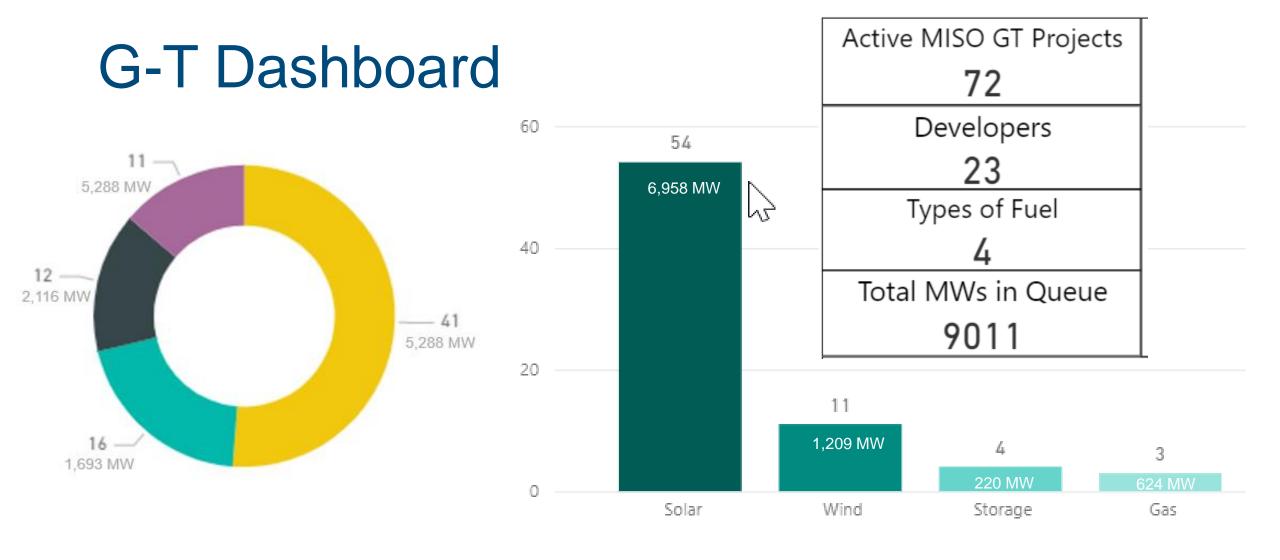

### Generation Interconnections MISO Process

Link to interconnection queue (CTRL + click to follow)

Link to Process Guide (CTRL + click to follow)


#### **Generator Interconnection Process**

DPP Phase 1 + DPP Phase 2 + DPP Phase 3 + GIA = ~ 505 Days




DPP Phase 1 + DPP Phase 2 = ~215 Days

# G-T Queue Snapshot: 2015, 2019, 2021



Note: Coal, diesel, and biofuel total less than 100 MW each for each chart.



Phase Oueued DPP Phase 2 Construction DPP Phase 3

11 atclic.com

# Affected System Studies

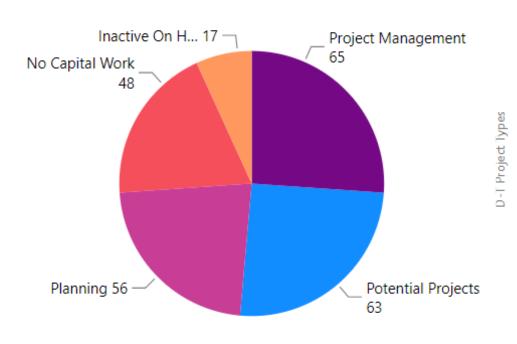
- PJM is an adjacent Regional Transmission Organization (RTO) that studies MISO generator interconnection projects and the study is included in the System Impact Study
  - ATC is not a member of PJM
  - Often the PJM Affected System study causes delays in the MISO process
  - The PJM analysis identifies upgrades within their own footprint that need to be paid for by the contributing generator to the constraint
  - PJM process to complete the Affected System Study differs significantly from the MISO study process
- Load Distribution Companies (LDCs) and existing Generation Operators (GOs) could also be an Affected System

# Other Generator Updates

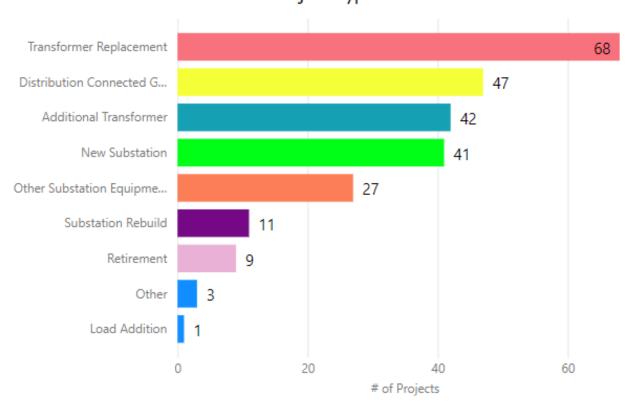
- ATC filed at FERC to change reimbursement policy for the 2020 queue cycle
- Replacement generators
- Surplus generation

# Distribution to Transmission (D-T) Interconnections


#### **70+ requests in 2020**


- Governing documents:
  - FERC Tariff Attachment FF-ATCLLC
  - NERC Standards
  - FERC Filed D-T Interconnection Agreement (IA)
  - ATC's Load Interconnection Guide
  - ATC's Business Practices

# Distribution to Transmission Interconnections


- Best Value Planning (BVP)
  - Collaborative planning assessment to determine the best value solution for all parties
  - Types of requests
    - New distribution substation
    - Distribution substation equipment change
    - Distributed energy resources (DERs)
    - Unforecasted load or change in load characteristics
    - Power quality issues
  - Individual Project Timelines Vary Widely

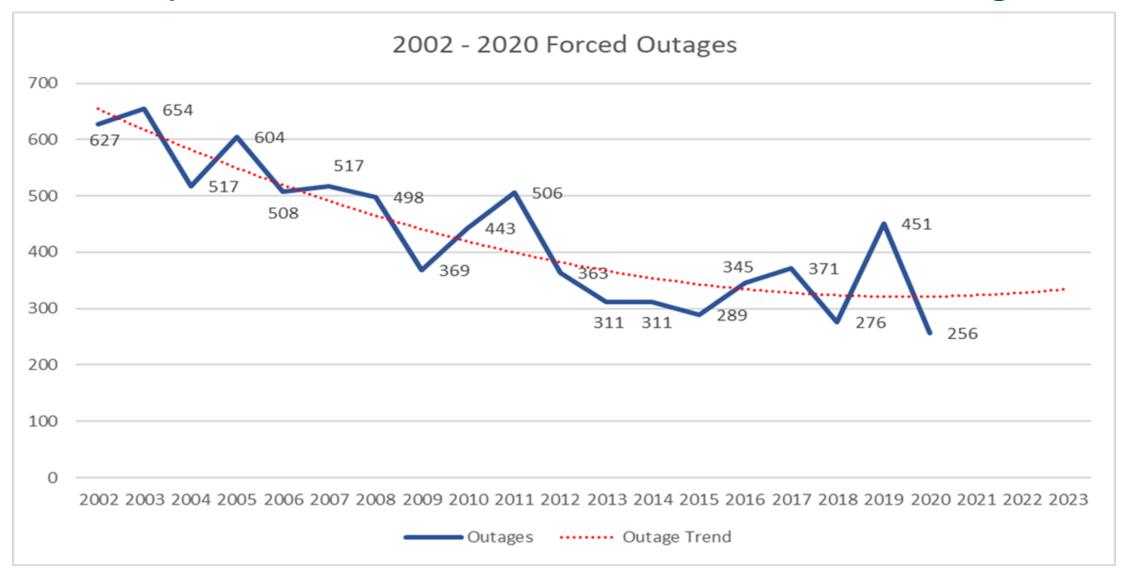
### **D-T Dashboard**



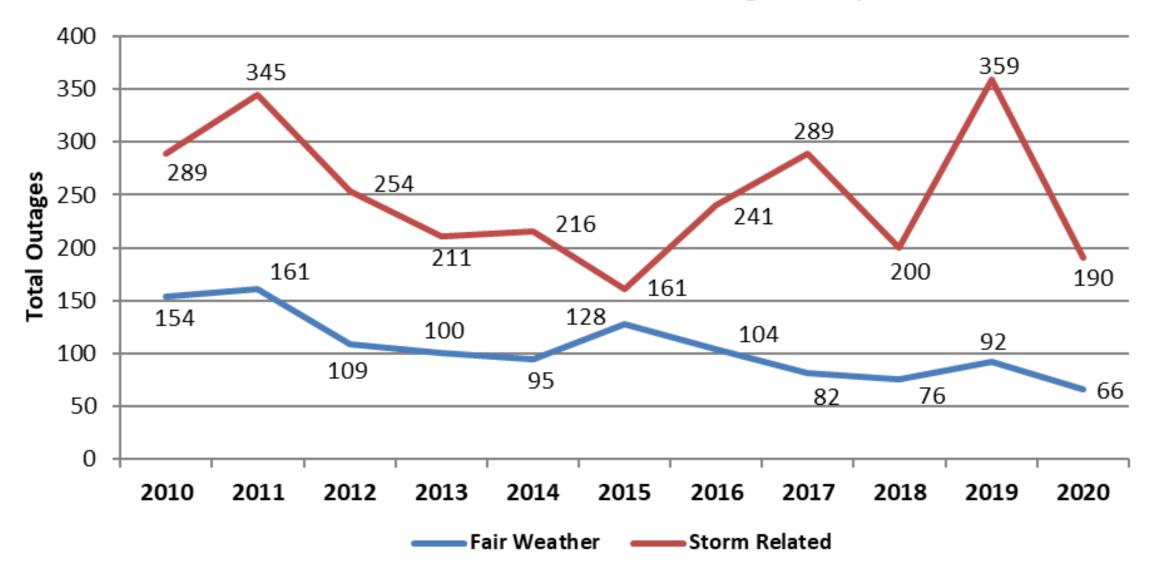


#### D-T Project Types

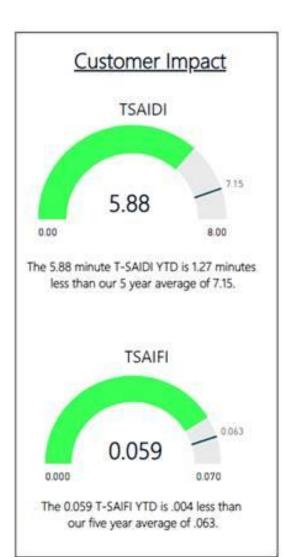


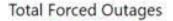

# Asset Renewal Program Objectives

- Safety public and worker
- Minimize total life cycle cost [Net Present Value of Revenue Requirements (NPV RR) from customer cost/rate perspective]
- Compliance
- Manage risk
- Reliable performance maintain or improvement
- Environmental performance improvements
- Coordination with Stakeholders


# Replacement is based on...

- Safety public and worker
- Condition tests, maintenance costs/risks
- Obsolescence part availability, factory support, craft labor expertise with this specific equipment, available spares
- Utilization application, system changes
- Criticality consequence of failure, outage impacts
- Costs maintenance and replacement
- Environmental PCB contamination, oil volumes and containment, proximity to waterways, SF6 gas leaks, lead, mercury, environmental compliance/risks
- Compliance NERC, CIP, EPA, State DNR
- Other Considerations test frequency, on-line monitoring, test information available, fleet size, common fleet issues, maintenance history, failure mode, industry experience


# ATC System Performance – Forced Outages







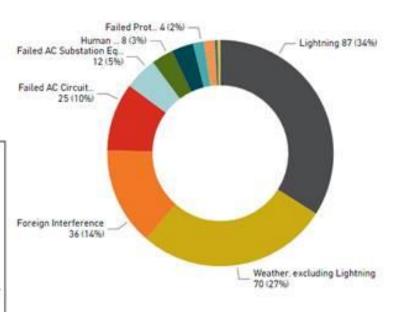

#### Reliability Performance: January - December 2020







The 256 total Forced Outages are 90 less than our five year average of 346.


#### 2020 Top impacting outages:

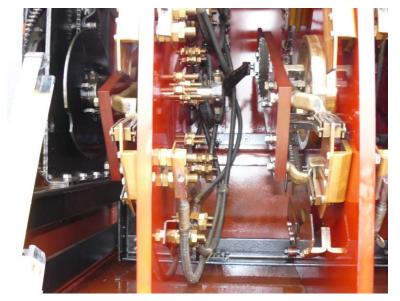
A failed jumper on circuit X-154 accounting for 1.16 minute (20%) T-SAIDI YTD. A planned outage at Tower Drive substation did not allow the circuit to be sectionalized and customers picked up.

A failed control house fuse and missing relay logic prevented system operations from sectionalizing circuit and restoring customers after a live off ROW tree fell onto TWFY81. 7,618 customers were impacted for 2.3 hours accounting for 0.40 minute (7%) T-SAIDI YTD.

Live off ROW tree fall in on circuit 6530 in a remote location making it difficult to locate and remove. 7,257 customers were impacted for an average of 4 hours accounting for 0.36 minute (6%) T-SAIDI.

#### Total Circuit Outages by Cause Code




21 atclic.com

# Asset Renewal – Draft 10 Year Forecast Substation Equipment Quantity

|                                   |      |      |      |      |      |        |      |            | Plan %   | Avg     | Anticipated | Avg -       |
|-----------------------------------|------|------|------|------|------|--------|------|------------|----------|---------|-------------|-------------|
|                                   |      |      |      |      |      | (·     | and  | In Service | Replaced | Nominal | Replacement | Anticipated |
| Row Labels                        | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 T |      | Qty        | Per Year | Life    | %           | %           |
| Arresters                         | 12   | 19   | 46   | 25   | 33   | 44     | 179  | 7,301      | 0.4%     | 40.0    | 2.50%       | -2.09%      |
| Batteries and Chargers            | 17   | 25   | 13   | 29   | 21   | 21     | 126  | 333        | 6.3%     | 20.0    | 5.00%       | 1.31%       |
| Breakers and Switchers            | 41   | 31   | 37   | 28   | 35   | 11     | 183  | 2,591      | 1.2%     | 50.0    | 2.00%       | -0.82%      |
| Capacitor Banks                   | 2    | 1    | 3    | 2    | 6    | 2      | 16   | 265        | 1.0%     | 50.0    | 2.00%       | -0.99%      |
| Control Houses                    | 6    | 5    | 1    | 4    | 4    | 4      | 24   | 267        | 1.5%     | 50.0    | 2.00%       | -0.50%      |
| Instrument Transformers           | 17   | 17   | 57   | 42   | 130  | 50     | 313  | 5,713      | 0.9%     | 40.0    | 2.50%       | -1.59%      |
| Physical Security - Asset Renewal | 309  | 448  | 377  | 8    | 87   | 5      | 1234 | 1,981      | 10.4%    | 7.0     | 14.29%      | -3.90%      |
| Power Transformers                | 4    | 4    | 3    | 5    | 4    | 3      | 23   | 198        | 1.9%     | 60.0    | 1.67%       | 0.27%       |
| Relays                            | 233  | 369  | 241  | 315  | 567  | 370    | 2095 | 6,763      | 5.2%     | 25.0    | 4.00%       | 1.16%       |
| SCADA                             | 20   | 22   | 18   | 17   | 36   | 27     | 140  | 631        | 3.7%     | 20.0    | 5.00%       | -1.30%      |
| SCADA (not a trigger)             | 7    | 14   | 16   | 31   | 21   | 28     | 117  | 2,664      | 0.7%     | 25.0    | 4.00%       | -3.27%      |
| Station Power Transformers        |      | 1    | 5    | 5    | 3    |        | 14   | 288        | 0.8%     | 40.0    | 2.50%       | -1.69%      |
| Switches                          | 57   | 85   | 66   | 45   | 97   | 45     | 395  | 5,792      | 1.1%     | 60.0    | 1.67%       | -0.53%      |
| <b>Grand Total</b>                | 725  | 1041 | 883  | 556  | 1044 | 610    | 4859 |            |          |         |             |             |

#### Lancaster Power Transformer – Life Extension

- Allis Chalmers Power Transformer
- Built in Milwaukee in 1954
- Life Extension 2015
  - High Voltage Bushings
  - Low Tap Changer bypass
  - Oil Seal Gaskets
- Planned Retirement 2024






23 atclic.com

### Granville Substation – Overview

- 345kV to 138kV transformation and distribution
- Located in Milwaukee
- Constructed circa 1968
- Important station functions
  - Network hub serving Milwaukee Metro area
  - Key network switching station connecting north with south
- 3x 345kV Lines
- 7x 138kV Lines
- Project Cost \$29M, 2024 In Service Date

# 345kV System



# Asset Renewals – Granville Substation Performance and Reliability Drivers

- 345kV
  - 4 Oil Breakers
  - 7 Disconnect Switches
  - 3 Arresters
- 138kV
  - 7 Oil Breakers
  - 12 Arresters
- Building and Equipment
  - Control House
  - 21 Relay Panels
  - 2 Remote Terminal Units (RTUs)
  - 3 Batteries, 5 Chargers



### Granville Oil Breakers

- 345kV
  - 4 1970 vintage Westinghouse 3450-GW-25000 oil breakers
    - No manufacturer support for engineering or parts
    - Bushings are prone to oil leaks and performance issues
    - Environmental concerns with large volumes (10,000 gallons) of oil per breaker with no oil spill containment.
    - Skill of the craft labor on this equipment is diminishing.
- 138kV
  - 7 1969 vintage Westinghouse 1380-GM-15000 oil breakers
    - Minimal manufacturer support for engineering or parts
    - Bushings are prone to leaks and performance issues
    - Operating Mechanism design requires significant maintenance





27 atclic.com

# Granville Relay Panels

- 21 relay panels
  - modern standardized schemes deliver
    - Superior protection and performance
    - Redundancy for secure operations and testing
    - Alarming to System Control Center
    - Remote interrogation for fault investigation, root cause analysis and improved restoration









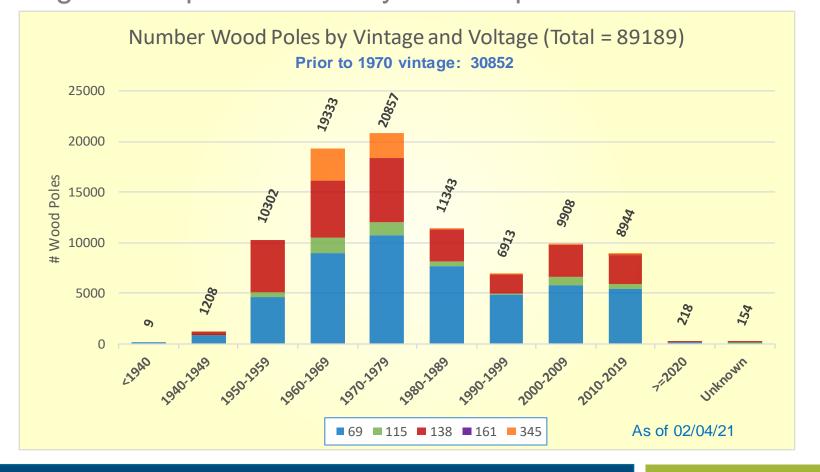
28 atclic.com

Bus Design Upgrade for System Resiliency

- 345kV asset renewal work makes this an opportune time to revisit bus configuration needed now and for the next 50 years
- Reliable constructability plan is key! (hint - Keep the Lights On!)



# Granville Substation Strategic Outlook


- Long Range (2024 and beyond) Strategic Outlook
  - High-priority local delivery role will continue
  - High-priority regional 345kV network facility for power transfer
  - Need for a robust, reliable bus configuration
  - Need to ensure station and equipment reliability

### Overhead Transmission Lines – 20 year Outlook

 Objective is to manage condition, preserve reliability and safety as these assets reach end of life.

• Pre-1970 vintage wood poles are likely to be replaced in the next 20 - 25

years.



### Overhead Transmission Lines – 20 year Outlook

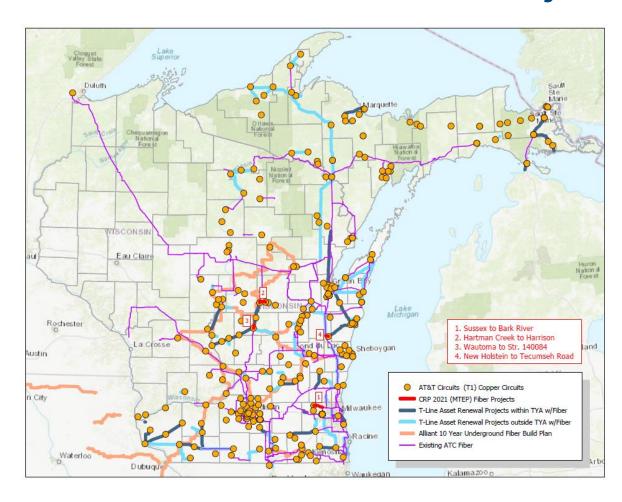
# 20 Year Outlook - Estimated Wood Poles Installed on ATC System Prior 1970

#### Identified needs:

- For the next twenty years initial outlook is ATC will need to rebuild approximately 100 miles per year considering all voltages.
- Future needs to still include:
  - Rebuild of steel poles and lattice structures with some of the oldest vintages from early 1900's.
  - Asset renewal of line insulators and more minor hardware to ensure adequate performance.

| Voltage Class | Mono<br>Wood<br>Poles | Multi -<br>Wood<br>Pole<br>Structures<br>* | Number of Wood Poles on Multi- Wood Pole Structur es | Grand<br>Total<br>Number<br>of<br>Wood<br>Poles | Grand<br>Total<br>Number<br>of<br>Wood<br>Structur<br>es | Average<br>Span<br>Length<br>(ft.) | Number<br>of Miles<br>per<br>Year<br>Next 20<br>Year |
|---------------|-----------------------|--------------------------------------------|------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------------------------------------|------------------------------------------------------|
| 69            | 13049                 | 652                                        | 1430                                                 | 14479                                           | 13701                                                    | 300                                | 39                                                   |
| 115           | 7                     | 1030                                       | 2123                                                 | 2130                                            | 1037                                                     | 650                                | 6                                                    |
| 138           | 962                   | 4851                                       | 10142                                                | 11104                                           | 5813                                                     | 650                                | 36                                                   |
| 345           | 0                     | 1528                                       | 3146                                                 | 3146                                            | 1528                                                     | 950                                | 14                                                   |
| Grand Total   | 15046                 | 8143                                       | 16989                                                | 32035                                           | 23189                                                    |                                    | 95                                                   |
|               |                       |                                            |                                                      |                                                 |                                                          | round                              | 100                                                  |

<sup>\*</sup> Multi - Wood Pole Structure is comprised of two (H-Frame) or more wood pole structures. As of 2/04/2021.


# Asset Renewal T-line Needs Example

- Portage Dam Heights 69kV Rebuild (Line Y-16)
  - Project Background
    - Approximately 25 of miles of rebuild
  - Past Needs
    - Condition and Performance Issues
    - Replace 1910's vintage lattice structures
    - Outages: One of the most frequently outage ATC lines
      - ✓ On average about 4 outages per year
      - ✓ Need to update to avian friendly design
      - ✓ Improved lightning performance
  - Current status
    - Project went in-service Fall of 2017
    - No outages since the new design went into service





# Communications Projects -In Service and Active Projects



# Communications Projects - 2021 & Beyond

- Challenges, Trends & Opportunities
  - AT&T Performance & Customer Service Challenges
  - Substation Communication Demands
  - T-Line Asset Management Alignment
  - LDC Partnership (Shared Communications)

# Non-Transmission Alternatives (NTAs)

- Stakeholders can offer NTAs through MISO's review process.
- MISO posted a list of NTA eligible projects with its January 27, 2021
   Subregional Planning Meeting (SPM) #1 meeting materials.
  - MISO has not specified a deadline yet, but NTA feedback is normally due in late May before SPM#2.

atcllc.com

NTA review process is described in MISO's <u>Business Practice</u>
 <u>Manual No.</u> 20 (page 82+).

# Non-Transmission Alternatives (NTAs)

- MISO is refining its NTA review process this year as part of its "Integrated Roadmap" (IR092) and plans to:
  - Develop mechanism to enable more opportunity for NTAs to be considered beyond the existing use of generation/energy storage which requires interconnection agreements.
  - Alternatives might include converting generators to synchronous condensers or use of load response.
- NTA Attributes:
  - Must be timely in mitigating reliability needs.
  - Must address the full range of needs/benefits.
  - Must provide a "Best Value Plan" for customers.
  - Address the reliability needs for every hour throughout the year.

# Planning Criteria Changes - Published

- 2021 Assessment Criteria Changes
  - Voltage Stability Margin: revised to 5% on a post-contingent basis sections 1.1.5 and 1.1.6
  - Clarified the application of expected clearing time margins section
     1.2.1
  - Posted as v20.2 on <u>atc10yearplan.com</u> website
- 2021 Assessment Practices Changes
  - Voltage Stability Margin definition: revised text describing how to apply the new definition - section 12.9
  - Posted as v20.1 on <u>atc10yearplan.com</u> website

# Planning Criteria Changes - Anticipated

- Only allow normal and emergency ratings in planning studies
- Address Non-BES Generator Tripping
- Post final Criteria and Practices as versions 21 in Spring 2021

### **Assessment Status**

- Next Steps
  - Needs comments due March 26
  - Finalize needs Early April
  - Preliminary solutions meeting/presentation May 11
  - Finish sensitivity studies May
  - Develop new or revised scope and cost estimates June
  - ATC internal review/approval August
  - 2021 Assessment publication October

# Public Policy Requirements – Comments?

 Any public policy driven needs that may not be covered by the Assessment process?

### Questions?

Chris Hagman

Email: <a href="mailto:chagman@atcllc.com">chagman@atcllc.com</a>

Heather Andrew (G-T and D-T)

Email: <a href="mailto:handrew@atcllc.com">handrew@atcllc.com</a>

Scott Adams (Asset Management Substation) or Justin Nettesheim (AR T-line)

Email: sadams@atcllc.com or jnettesheim@atcllc.com

Matt Falkowski (Communications)

Email: mfalkowski@atcllc.com

David Smith (Assessment Criteria and Practices)

Email: dsmith@atcllc.com