

Helping to keep the lights on, businesses running and communities strong[®]

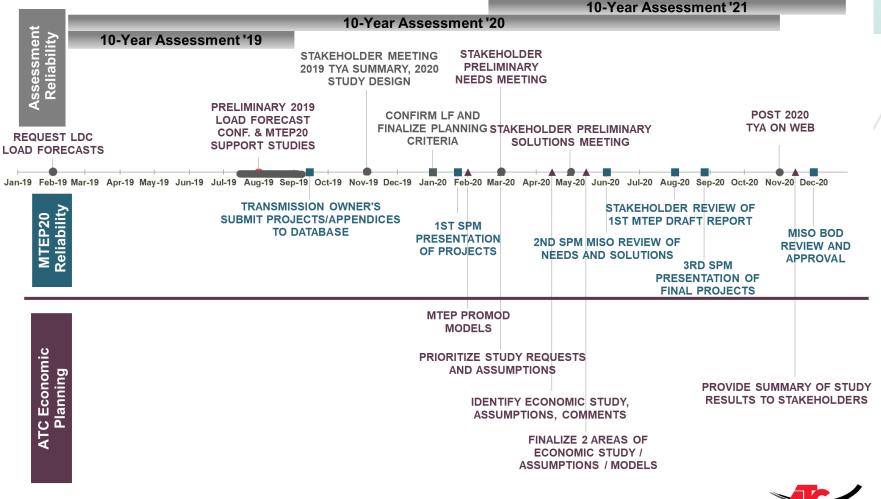
2020 10-Year Assessment Preliminary Study Design

November 4, 2019 Stakeholder and Customer Webcast Chris Hagman, System Planning

atcllc.com

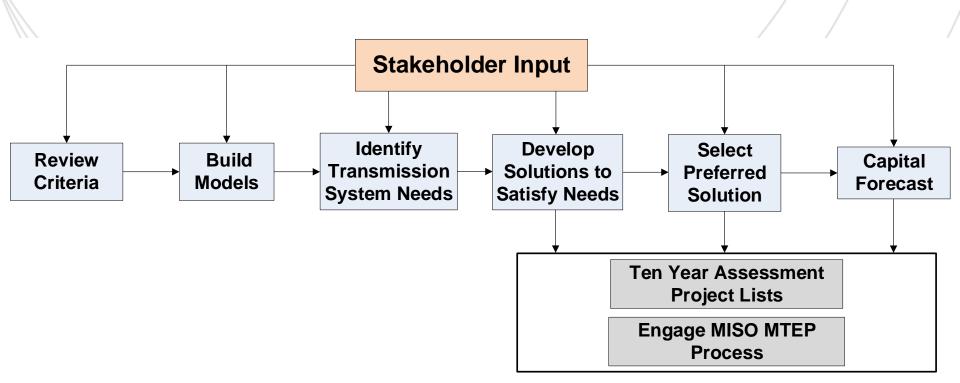
Purpose

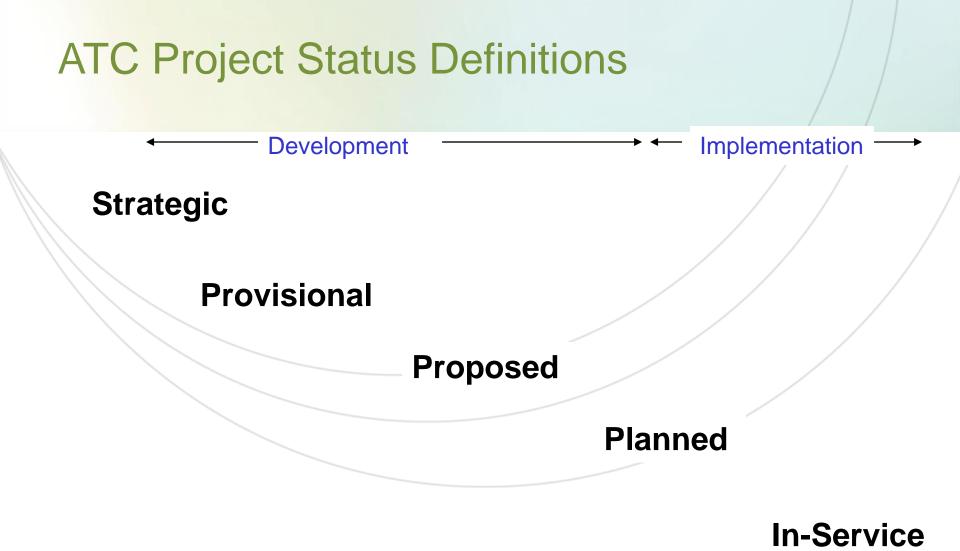
- Summarize ATC's project development processes
- Solicit input for the 2020 Assessment Study Design
- Solicit input on Public Policy Requirements


ATC's Project Development Processes

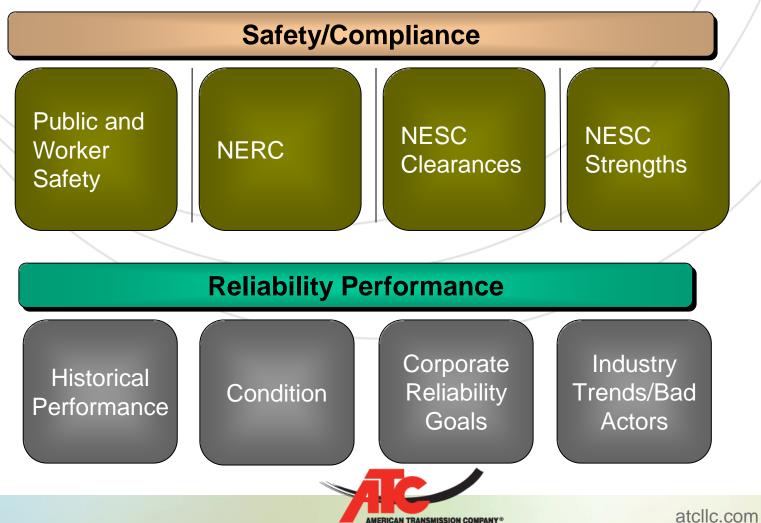
Local Transmission Planning

- Asset Renewal
- Interconnections
- Network
 - Planning Reliability Criteria
 - Sectionalizing Guidelines
 - Economic Benefits Considerations
- Consider Other Solutions (non-transmission alternatives)
- Regional Planning
- Public Policy Requirements


Timeline



ATC Project Identification Process



Asset Renewal Program Objectives

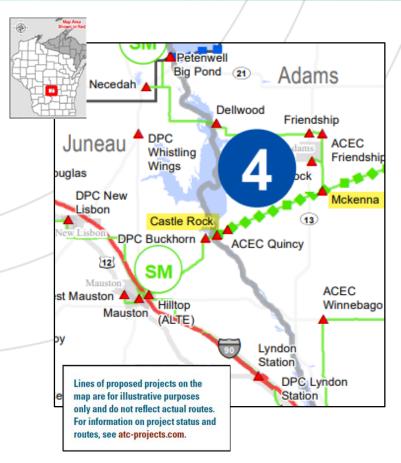
- Safety Public and worker
- Minimize total life cycle cost
- Compliance
- Manage risk of aging infrastructure
- Reliability performance improvements
- Environmental performance improvements

Asset Renewal Criteria

com

Asset Renewal Considerations

Is the asset still needed?


- Assess area needs
- Obtain cross-functional and distribution provider input
- Consider removal of lines (full/partial retirement)
- What ratings are needed?
- Investing prudently using defensible criteria

Asset Renewal: McKenna - Castle Rock 69 kV (Y-47), Rebuild

- Condition of 1950's Wood Structures and Hardware

 In bottom 5% for 69 kV lines.
- Address existing reliability and market constraint issues
 - Increased rating needed to meet long-term reliability needs.
 - Line is a known market constraint.
 - Increased rating projected to provide economic benefits of between \$600k and \$4.5M over 40-years (assumes X-43 rebuild).

Interconnections

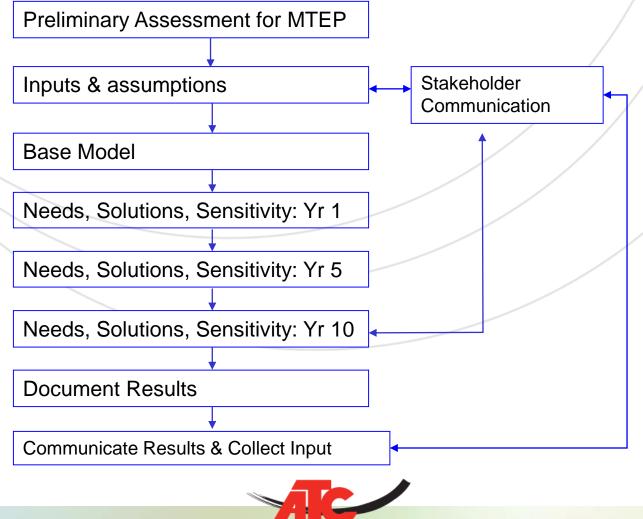
• G-T

Support MISO Attachment X and Y Processes

• D-T

- Collaborate with distribution providers through Load
 Interconnection Request Form (LIRF) and BVP process
- T-T

Collaborate with other Transmission Owners



Network Planning Objectives

- Compliance with NERC regional and local criteria
- Best Value Plan (BVP)
- Customer involvement
- Address Public Policy requirements
- Maintain or improve the adequacy and reliability of the electric transmission system

Network Planning Assessment Process

Criteria

- NERC Standards, particularly <u>TPL-001, version 4</u>
- ATC Planning Criteria
 - Consists of criteria and assessment practices
 - <u>http://www.atc10yearplan.com</u> (About tab)
 - Current versions: Planning Criteria v19.3 & Planning Assessment Practices v7.3
- Sectionalizing Guidelines
 - Developed with distribution providers early in ATC's history
 - <u>http://www.atcllc.com/wp-content/uploads/2017/12/Load-</u>
 <u>Interconnection-Guide-Rev-7-121517-Pub.pdf</u> (Sections 3.6.1-3.6.2)

Criteria Updates Since Last Year

Criteria v19.3 compared to v19.1

- Relaxed the lagging power factor requirements for generators from 0.90 to 0.95
- Added "Inverter-Based Resources Stability Assessment", subsection 1.2.1.C)3
- Minor clarifications to other language in criteria section 1.2

• Assessment Practices v7.3 compared to v7

- Simplified multiple outage process description
- Relaxed the lagging power factor requirements for generators from 0.90 to 0.95
- Removed the 5% Transmission Reliability Margin (TRM) for MISO generation interconnection studies

Criteria Considerations

- Emergency Thermal Ratings
 - Clarify use in planning studies
 - Cover event duration
- Appropriate Ratings complete ATC definition/impacts
- Return to Normal Rating during event
 - May develop plan to assess impacts
 - Not developing projects for 2020 Assessment

2020 Studies and Assumptions

- Preliminary 2019 Load Forecast Confirmation and MTEP20 Support Studies
- Modeling Assumptions
 - Model Years
 - Load
 - Generation
 - No Load Loss Allowed Contingency Analysis
- Additional Studies

Preliminary Load Forecast and MTEP20 Support Studies

- Initial screening (reduced generator reactive capability)
 - Summer peak (5 and 10 year models)
 - 2019 load forecast
 - 2019 TYA outside world (2018 MMWG cases)
- To confirm 2019 Load Forecast and support MTEP20 database development
 - No load loss allowed contingencies
 - Completed July 2019

Projects Submitted to MTEP20

MTEP20 Active Project List

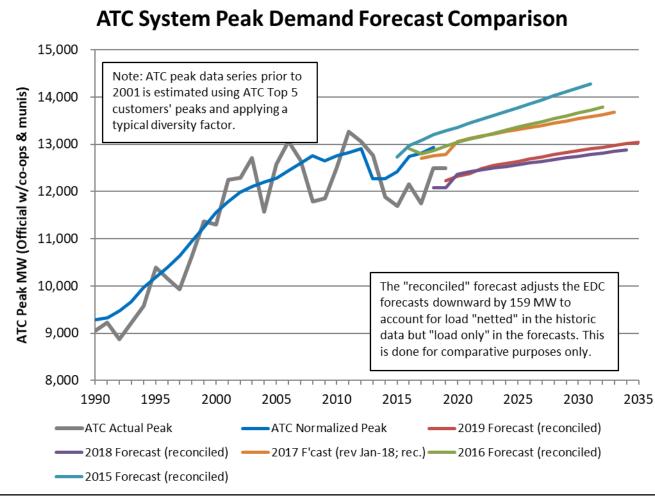
2020 TYA Model Years

- 2020 (As-planned)
- 2021
- 2025
- 2030
- All models will likely be completed by the Spring of 2020

Load - Historical

• Requested September 27, 2019

- Summer peak
- Winter peak
- Light load
- Shoulder load
- Received November 1, 2019
- Add to databases



Load – Expected Forecast

- Requested LDC forecasts February 2019
 - 11 years
 - Consistent with resource planning forecast
 - Expected (50/50 probability)
- Received in Quarter 2 of 2019
- ATC compares forecasts to previous forecasts
 - Any notable differences are confirmed with the LDCs
 - Finalized copy of forecast provided to LDCs in August 2019
 - Forecasts used to plan the system

Load Forecast Trends

Forecast	10-Year Average			
Year	Growth Rate			
2019	0.50%			
2018	0.50%			
2017	0.53%			
2016	0.52%			
2015	0.66%			
	/			

Load Forecast Trends, Continued

	ATC Load (MW)			
Model	2018	2019	2020	
	Assessment	Assessment	Assessment	
Year 1 Summer Peak	13,000	12,300	12,600	
Year 5 Summer Peak	+400	+400	+300	
Year 10 Summer Peak	+600	+600	+500	
Year 5 Shoulder	9,400	8,900	9,200	
Year 10 Shoulder	+100	+100	+100	

Generation Modeling

Existing generator data

Annual updates requested from Generator Owners (GOs) in Q3

Generation additions

- Only add generators with signed interconnection agreements (IAs)
 Additions modeled at MISO Facility study location

Generation retirements

- Generators with a completed MISO Attachment Y are modeled as retired, unless there is a System Support Resource (SSR) agreement
- Under intact system and outage conditions
 - Generators are limited to:
 - 90% of maximum reactive power output and
 - 90% of maximum reactive power consumption

Generation Dispatch

- Local Balancing Area (LBA) merit order dispatch:
 - Used in Assessment's summer peak and shoulder models.
 - Provided by LBAs

• ATC-wide merit order dispatch:

- Used in minimum load models
- ATC-wide merit order dispatch determined using PROMOD

Generators without scheduled transactions:

- If they have signed IAs, generator included in the host LBA.

No Load Loss Allowed Contingency Analysis

Peak

- 1, 5, and 10 year out models

Shoulder (firm)

- 5 and 10 year out models
- 70% load except for Zone 2 (90% load) and northern Zone 4 (80% load)
- Shoulder rating methodology

Minimum load

- 1 and 5 year out model
- 40% load, may be adjusted based on analysis of historical loads

Additional Network Planning Studies

- Existing Generator Stability Reviews
- Annual Fault Study

Non-transmission Alternative Consideration

- Preliminary process developing with our stakeholders
- Two ways NTA process can be initiated Need initiated by local distribution provider
 - - Identify T or D related reliability/service concerns
 - Develop needs and solutions
 - Communicate with ATC to promote collaboration
 - Use existing D-T or G-T processes
 - Need initiated by ATC
 - 10-Year Assessment screening develop Needs/Limitations lists
 - Customers/stakeholders engage ATC with ideas
 - Collaborate to identify possible DER options from customers
 - Open project development discussions
 - Use modified BVP practices to balance comparison of appropriate alternatives

Regional Planning

• MTEP

- Preliminary screening helps ATC to better prepare for upcoming MTEP cycle
- MISO Coordinated Seasonal Assessments
- Reliability First (RF) Seasonal Assessments

Public Policy Requirements

- Follow MISO Tariff (Attachment FF) Processes
- Previously identified requirements
 - State Renewable Portfolio Standard (RPS) mandates
 - EPA regulations
 - State mandates and goals for energy efficiency (EE) and demand side management (DSM) programs
- Any public policy requirements not identified in ATC or MISO processes?

Schedule

- Expected Load Forecast Review complete August 2019
- Preliminary MTEP20 Support Study Done
- Post 2020 TYA Preliminary Study Design Done
- Stakeholder Study Design Meeting November 4, 2019
- Stakeholder Design Comments Due November 30, 2019
- Study Design Completion December 2019
- Preliminary Needs Meeting March 2020
- Preliminary Solutions Meeting May 2020
- Document and Publish October 2020

Thank you for Participating

To provide solicited comments or for more information, please contact

Chris Hagman Phone: 608-877-7134 Email: chagman@atcllc.com

By November 30, 2019

