

Helping to keep the lights on, businesses running and communities strong®

2019 Economic Planning Study Results

Anna Torgerson, Economic Planning November 4, 2019

Introduction

- Process Overview and Timeline
- MTEP19 Futures Refresh
- Study Area Results
- Next Steps

ATC Process Overview and Timeline

ATC Economic Project Planning – Per ATC Tariff

- During February, we hold an initial stakeholder meeting to review the market congestion summary and potential fixes and to discuss economic study scenarios, drivers, ranges, and assumptions.
- By March 1, we work with stakeholders to request and prioritize new/other economic studies and recommend study assumptions.
- By April 15 we identify preliminary areas of economic study, study assumptions and models and solicit further comments from stakeholders.
- By May 15 we finalize areas of economic study, study assumptions and models to be used in analysis.
- By November 15 we provide a summary of the results of the economic analyses to our stakeholders.

MISO MTEP19 Futures

- Accelerated Fleet Change (AFC)
- Continued Fleet Change (CFC)
- Distributed and Emerging Technologies (DET)
- Limited Fleet Change (LFC)

Accelerated Fleet Change

- Policy/Regulation targeting reduction in CO² emissions
- CO² reduction goal set at 20% than current levels
- Increased demand on NG drives prices higher
- Increased retirement of coal to meet CO² target
- Robust economy drives more technology advancement, resulting in more energy efficiency, distributed generation, and demand response
- Higher gross demand and energy, offset by tech advancement

Continued Fleet Change

- Continued coal and age related retirements
- Transitioning of generation fleet to natural gas
- Mid level demand and energy growth rates
- Return to mid level fuel prices
- Current trend of renewable investment continues

Distributed & Emerging Technology

- Continued coal and age related retirements
- Age related Nuclear retirements
- Higher energy usage driven by electric vehicles
- Electric Vehicles shift time of use for energy
- Return to mid level fuel prices
- Renewable siting is much more localized and urban

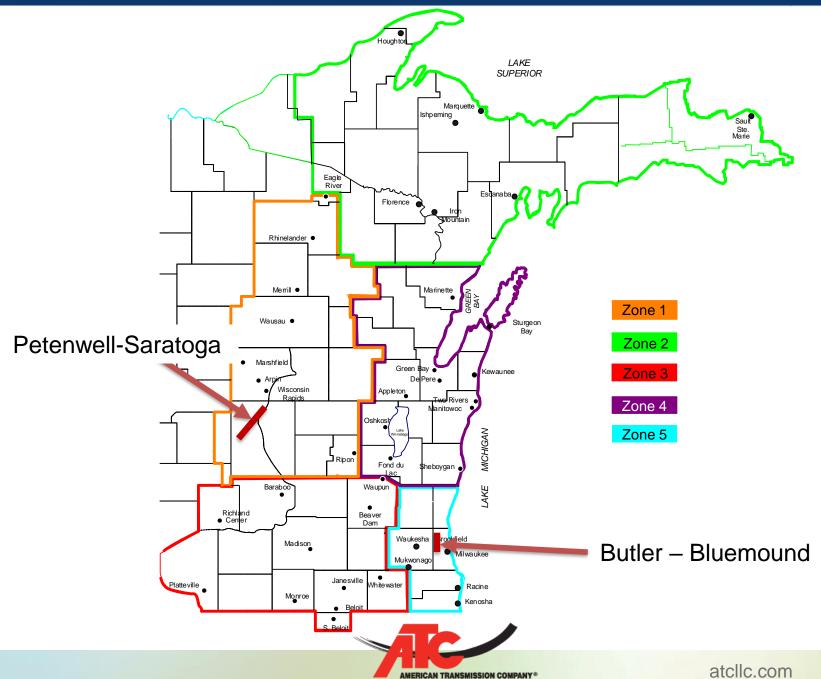
Limited Fleet Change

- Largely unchanged generation fleet
- Lower demand and energy growth rates
- No carbon emission regulations
- Age related coal retirements
- Lower renewable development targets
- Lower fuel costs

MISO MTEP19 Key Assumptions

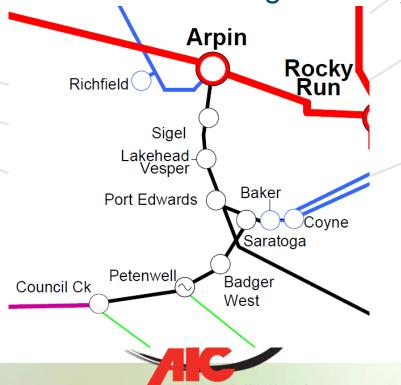
				J	
Future	Accelerated Fleet Change	Continued Fleet Change	Distributed & Emerging Tech	Limited Fleet Change	
Net Demand & Energy Growth Rates	High (90/10)	Base (50/50)	Base + EV Energy = 1.0% Demand = 0.4%	Low (10/90)	
Natural Gas Price Forecast	Gas: Base +30% Coal: Base	Base	Base	Gas: Base -30% Coal: Base -3%	
Max DR/EE/DG Tech Potential	EE: 6.8 GW DR: 0.5 GW DG PV: 10.1 GW	EE: 5.0 GW DR: 0.2 GW DG PV: 4.5 GW	EE: 5.5 GW DR: 0.2 GW DG PV: 28.5 GW 2 GW storage	EE: - DR: 0.6 GW DG PV: 2.4 GW	
Renewables By Year 2033 (% Wind and Solar Energy)	39%	20%	25%	15%	
Retirement	Coal: 19 GW Gas/Oil: 16 GW	Coal: 19 GW Gas/Oil: 16 GW	Coal: 19 GW Gas/Oil: 16 GW Nuclear: 2 GW	Coal: 9 GW Gas/Oil: 16 GW	
CO2 Reduction Constraint From Current Levels by 2032	20%	None	None	None	
Siting Methodology	MTEP Standard	MTEP Standard	Localized	MTEP Standard	

Source: MISO Futures Summary


https://cdn.misoenergy.org/MTEP19%20Futures%20Summary291183.pdf

Notable MTEP19 Congestion

- Butler Bluemound 138 kV
- Petenwell Saratoga 138 kV
 - This has a remedial action scheme (RAS) for constraint mitigation
- North Monroe Bass Creek 138 kV
 - Driven by future assumed generation siting
- Eden Wyoming Valley 138 kV
 - Driven by future assumed generation siting

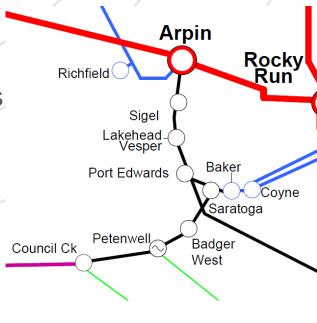

Petenwell – Saratoga 138kV

- New NERC study requirements increases cost of maintaining RAS
- A significant portion of the poles need to be replaced in 5-10 years
- Reliability issues in the area

Petenwell Area Alternatives

- Double Circuit X-33 (Arpin Sigel 138kV)
- New Jackson County Saratoga 161kV line
- Rebuild X-43 (Petenwell Saratoga 138kV)

Petenwell MTEP19 Study Results


		MISO MTEP19 Planning Futures				
		AFC	CFC	DET	LFC	
ternativ	Build Double Circuit X-33	(\$102,096,171)	(\$78,375,129)	(\$130,154,804)	(\$135,685,790)	
	Build Jackson County - Port Edwards 161kV	(\$26,515,842)	\$505,474	(\$19,509,944)	\$7,194,344	
	Rebuild Petenwell - Saratoga	\$9,439,437	\$16,696,497	\$10,876,704	\$30,213,544	

Note: Numbers are 2019 present value gross benefit from the Customer Benefit metric.

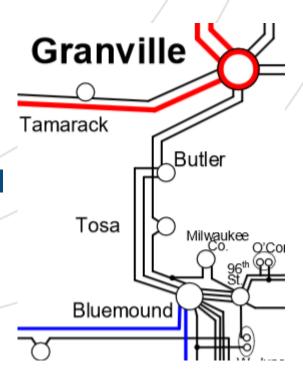
Petenwell Rebuild Sensitivities

- Rebuild and 69kV Asset Renewals
 - Rebuild X-43 Petenwell Saratoga
 - Rebuild 69kV Castle Rock McKenna Lincoln
- Rebuild and Port Edwards Queue Solar
 - Rebuild X-43 Petenwell Saratoga
 - Queue Solar J986 without DPP upgrades
- Rebuild and Retire Weston 3
 - Rebuild X-43 Petenwell Saratoga
 - Retire Weston 3, 31 and 32 in 2022
 - Weston 4 assumed in-service

Petenwell Rebuild Sensitivity Results

		MISO MTEP19 Planning Futures			
		AFC	CFC	DET	LFC
ternative	Rebuild Petenwell - Saratoga	\$9,439,437	\$16,696,497	\$10,876,704	\$30,213,544
	Rebuild and 69kV Asset Renewal Rebuilds	\$13,964,640	\$18,522,220	\$11,537,681	\$32,922,902
	Rebuild and Port Edwards Queue Solar	\$3,311,280	\$7,358,320	\$8,342,775	\$21,686,954
	Rebuild and Retire Weston 3	\$8,239,646	\$17,064,711	\$9,824,820	\$30,493,315

Note: Numbers are 2019 present value gross benefit from the Customer Benefit metric.


Initial Conclusions on X-43 Rebuild

- Improves Reliability Issues
- Lower Cost for Asset Renewal Projects
- IT Project Cost Savings
- Lowers Market Congestion
- Removes the need for Council Creek RAS
 - Saves time and money
- Support future Generation Interconnection Queue
- Project is currently in Appendix B with ISD of 12/2022

Economic Study Bluemound Alternatives

- Rebuild Granville-Bluemound 138kV Corridor to Double Circuit
- Rebuild Granville-Bluemound 138kV Corridor to Single Circuit
- Build New 345kV from Granville to Mill Rd and Tie in Cypress – Arcadian 345
- Non-Transmission Alternative (NTA)
 - 10MW 50MWH Battery at Bluemound
 - 10MW DG PV in WEC at various
 Milwaukee load points

Bluemound MTEP19 Study Results

		MISO MTEP19 Planning Futures				
		AFC	CFC	DET	LFC	
ternative	Rebuild to Double Circuit	\$19,505,095	\$2,612,320	\$7,887,287	\$2,381,987	
	Rebuild to Single Circuit	\$3,993,819	\$338,808	\$1,722,682	\$2,395,451	
	Mill Rd Build 345kV	\$14,350,036	\$2,517,579	\$4,031,783	(\$149,893)	
	NTA	\$32,850,572	\$25,282,334	\$23,869,216	\$17,820,603	

Note: Numbers are 2019 present value gross benefit from the Customer Benefit metric.

Initial Conclusions

- The corridor shows significant benefit by rebuilding to double circuit, but there is not enough benefit to justify a project (\$20M)
- Mill Rd 345kV alternative rejected due to negative benefit
- The NTA alternative benefit is driven by cheaper generation costs and not reduction of congestion
 - Cost of \$40M is greater than benefits
 - Adjust Battery Storage Modeling for more direct congestion mitigation

Next Steps

- Continued work with MISO and customers on Petenwell Saratoga 138kV Rebuild
- Continued Analysis for NTA Solutions and Battery Modeling
 - Work with ABB and MISO on PROMOD HD Storage Modeling
- Timelines
 - February 2020 Next Stakeholder Meeting

Questions

- ATC Economic Planning
- Dale Burmester
 - dburmester@atcllc.com
- Anna Torgerson
 - atorgerson@atcllc.com

Thank You For Your Time!

