

Helping to keep the lights on, businesses running and communities strong®

2018 Economic Planning Study Results

Anna Torgerson, Economic Planning October 25, 2018

Introduction

- Process Overview and Timeline
- MTEP18 Futures Refresh
- Study Area Results
- Next Steps

ATC Process Overview and Timeline

ATC Economic Project Planning – Per ATC Tariff

- During February, we hold an initial stakeholder meeting to review the market congestion summary and potential fixes and to discuss economic study scenarios, drivers, ranges, and assumptions.
- By March 1, we work with stakeholders to request and prioritize new/other economic studies and recommend study assumptions.
- By April 15 we identify preliminary areas of economic study, study assumptions and models and solicit further comments from stakeholders.
- By May 15 we finalize areas of economic study, study assumptions and models to be used in analysis.
- By November 15 we provide a summary of the results of the economic analyses to our stakeholders.

MISO MTEP18 Futures

- Accelerated Fleet Change (AFC)
- Continued Fleet Change (CFC)
- Distributed and Emerging Technologies (DET)
- Limited Fleet Change (LFC)

Accelerated Fleet Change

- Policy/Regulation targeting reduction in CO² emissions
- CO² reduction goal set at 20% lower than 2005 levels
- Increased demand on NG drives prices higher
- Increased retirement of coal to meet CO² target
- Robust economy drives more technology advancement, resulting in more energy efficiency, distributed generation, and demand response
- Higher gross demand and energy, offset by tech advancement

Continued Fleet Change

- Continued coal and age related retirements
- Transitioning of generation fleet to natural gas
- Mid level demand and energy growth rates
- Return to mid level fuel prices
- Current trend of renewable investment continues

Distributed & Emerging Technology

- Continued coal and age related retirements
- Higher energy usage driven by electric vehicles
- Electric Vehicles shift time of use for energy
- Return to mid level fuel prices
- Renewable siting is much more localized and urban

Limited Fleet Change

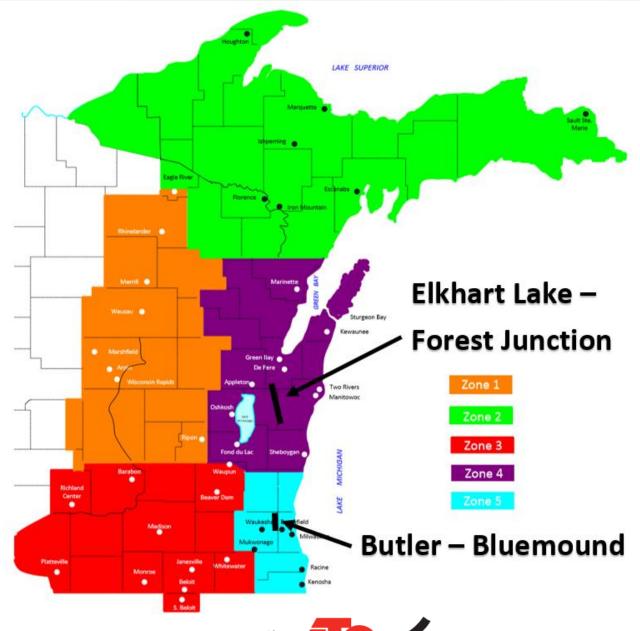
- Largely unchanged generation fleet
- Lower demand and energy growth rates
- No carbon emission regulations
- Age related coal retirements
- Lower renewable development targets
- Lower fuel costs

MISO MTEP18 Key Assumptions

Future	Accelerated Fleet Change	Continued Fleet Change	Distributed & Emerging Tech	Limited Fleet Change
Net Demand & Energy Growth Rates	High (90/10)	Base (50/50)	Base + EV Energy = 1.1% Demand = 0.6%	Low (10/90)
Natural Gas Price Forecast	Gas: Base +30% Coal: Base	Base	Base	Gas: Base -30% Coal: Base -3%
Max DR/EE/DG Tech Potential	EE: 7 GW DR: 7 GW	EE: 1 GW DR: 4 GW	EE: 1+ GW DR: 4+ GW + 2 GW storage	EE: - DR: 3 GW
Renewables By Year 2031 (% Wind and Solar Energy)	26%	15%	20%	10%
Retirement	Coal: 24 GW Gas/Oil: 17 GW	Coal: 16 GW Gas/Oil: 17 GW	Coal: 17 GW Gas/Oil: 17 GW Nuclear: 2.5 GW	Coal: 9 GW Gas/Oil: 17 GW
CO2 Reduction Constraint From Current Levels by 2032	20%	None	None	None
Siting Methodology	MTEP Standard	MTEP Standard	Localized	MTEP Standard

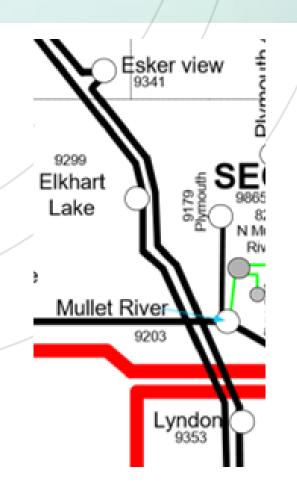
Source: MISO September 27, 2017 Planning Advisory Committee

https://cdn.misoenergy.org/20170927%20PAC%20Item%2003d%20MTEP18%20Futures%20Results%20Review89925.pdf



Notable MTEP18 Congestion

- Badger West Petenwell 138kV
 - This has an SPS that mitigates the constraint.
- Elkhart Lake Forest Junction 138kV*
- Butler Bluemound 138kV*
- Granville Tosa 138kV
- Sunnyvale Sherman St. 115kV


*Studied in 2018 MISO MCPS

Economic Study Elkhart Lake Alternatives

- Load Move
- 10MW Battery at Elkhart Lake
- Reconductor
- Uprate to Maximum Operating Temperature
- Series Reactor

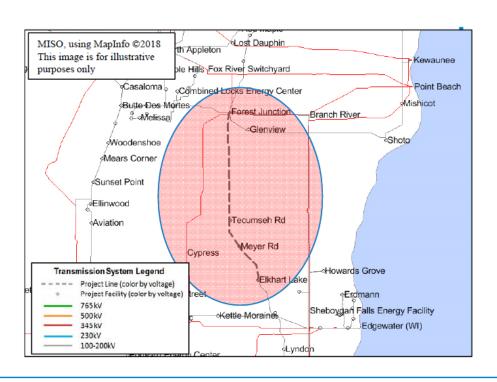
Elkhart Lake MTEP18 Study Results

	MISO MTEP18 Planning Futures				
	AFC	CFC	DET	LFC	
Load Move	\$1,608,126	\$1,668,001	\$5,341,415	\$1,787,787	
Elkhart Lake Battery	(\$3,773,248)	\$1,360,688	(\$1,841,374)	(\$47,506)	
Reconductor	\$39,905,794	\$9,144,807	\$1,025,002	\$4,994,627	
Uprate	\$16,086,130	\$2,284,808	\$58,963	\$2,142,633	
Series Reactor 20ohm	\$38,197,360	\$7,453,043	\$1,760,763	\$3,441,565	

Note: Numbers are 2018 present value gross benefit from the Customer Benefit metric.

Initial Conclusions

- Uprating Forest Junction-Elkhart Lake-Saukville to maximum operating temperature does not relieve all congestion (around 40%).
- Reconductoring Forest Junction-Elkhart Lake-Saukville has high economic benefit but also high cost.
- A Battery at Elkhart Lake causes congestion on Elkhart Lake-Saukville. A battery at Saukville does not have a high enough shift factor to economically justify building a battery for this specific application.



Elkhart Lake Series Reactor

- Cost of \$1.2 Million
- 40 Year Customer Benefit of \$11.2 Million
- Minimum reduction of shadow price of 88%.
- The Series Reactor is targeted for Appendix A.
- MISO's Board will vote on the Series Reactor in December.

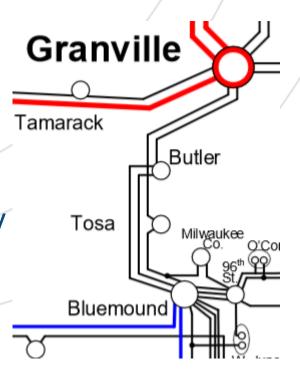
Project 2: Add Series Reactor on Forest Junction to Elkhart Lake 138kV

Project 2 relieves most of the congestion on Forest Junction – Elkhart Lake 138kV line

Total SI	Total Shadow Price(k\$/MW-yr)		Total Binding Hours		
RT	DA	Projected	RT	DA	Projected
110	106.3	86	236	1567	327

Project 2 brings benefit exceeding its cost to both MISO and local transmission pricing zone

B/C to MISO N/C: 3.55


B/C to local TPZ: 5.62

Project 2 passes reliability no-harm test

Economic Study Bluemound Alternatives

- Build Additional Bluemound-Granville 138kV
- 50MW Battery at Bluemound
- Uprate both Bluemound-Butler 138kV lines
- Build 3rd Oak Creek-Bluemound 230kV

Bluemound MTEP18 Study Results

	MISO MTEP18 Planning Futures				
	AFC	CFC	DET	LFC	
Build Blu Granville	\$6,150,411	\$23,582,893	\$20,179,996	\$12,338,708	
Blu. Battery	(\$1,140,854)	\$1,461,196	(\$2,358,645)	(\$463,871)	
Uprate BluButler	\$987,424	\$601,731	\$7,954,734	\$337,452	
3rd Oak Creek - Blu 230	\$3,994,275	\$7,644,978	\$4,227,447	\$7,311,877	

Note: Numbers are 2018 present value gross benefit from the Customer Benefit metric.

Initial Conclusions

- The corridor shows significant benefit by adding another circuit, at a yet to be determined cost.
- Uprating or reconductoring the lines have higher costs compared to benefits.
- The battery alternative at Bluemound would have to be very large to significantly reduce the amount of congestion.

Next Steps

- Continued work with MISO and customers on Series Reactor at Elkhart Lake
- Continued Analysis for Solutions at Bluemound-Butler
- Timelines
 - February 2019 Next Stakeholder Meeting

Questions

- ATC Economic Planning
- Dale Burmester
 - dburmester@atcllc.com
- Anna Torgerson
 - atorgerson@atcllc.com

Thank You For Your Time!

