

Helping to keep the lights on, businesses running and communities strong®

2018 Economic Planning Study Assumptions

Erik Winsand, ATC Economic Planning May 2, 2018

ATC Process Overview and Timeline

- ATC Economic Project Planning Per ATC Tariff
 - During February, we hold an initial stakeholder meeting to review the market congestion summary and potential fixes and to discuss economic study scenarios, drivers, ranges, and assumptions.
 - By March 1, we work with stakeholders to request and prioritize new/other economic studies and recommend study assumptions.
 - By April 15 we identify preliminary areas of economic study, study assumptions and models and solicit further comments from stakeholders.
 - By May 15 we finalize areas of economic study, study assumptions and models to be used in analysis.
 - By November 15 we provide a summary of the results of the economic analyses to our stakeholders.

Introduction

- Process Overview and Timeline
- Quick MTEP18 Futures Refresh
- Forest Junction Elkhart Lake Update
- Energy Storage Discussion
- Next Steps

MISO MTEP18 Futures

- Limited Fleet Change (LFC)
- Continued Fleet Change (CFC)
- Accelerated Fleet Change (AFC)
- Distributed & Emerging Technology (DET)

Limited Fleet Change

- Largely unchanged generation fleet
- Lower demand and energy growth rates
- No carbon emission regulations
- Age related coal retirements
- Lower renewable development targets
- Lower fuel costs

Continued Fleet Change

- Continued coal and age related retirements
- Transitioning of generation fleet to natural gas
- Mid level demand and energy growth rates
- Return to mid level fuel prices
- Current trend of renewable investment continues

Accelerated Fleet Change

- Policy/Regulation targeting reduction in CO² emissions
- CO² reduction goal set at 20% lower than 2005 levels
- Increased demand on NG drives prices higher
- Increased retirement of coal to meet CO² target
- Robust economy drives more technology advancement, resulting in more energy efficiency, distributed generation, and demand response
- Higher gross demand and energy, offset by tech advancement

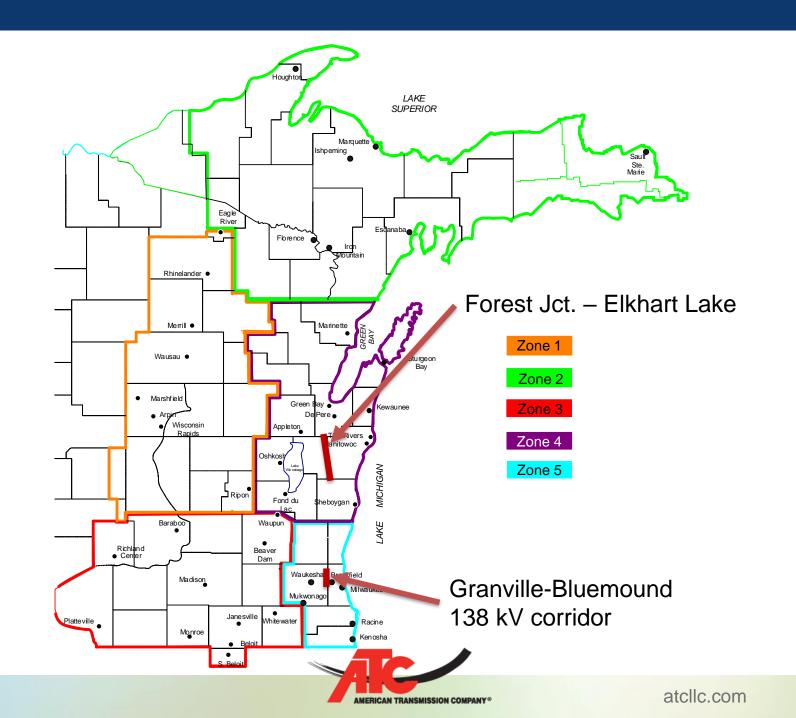
Distributed & Emerging Technology

- Continued coal and age related retirements
- Higher energy usage driven by electric vehicles
- Electric Vehicles shift time of use for energy
- Return to mid level fuel prices
- Renewable siting is much more localized and urban

MISO MTEP18 Key Assumptions

Future	Limited Fleet Change	Continued Fleet Change	Accelerated Fleet Change	Distributed & Emerging Tech
Net Demand & Energy Growth Rates	Low (10/90)	Base (50/50)	High (90/10)	Base + EV Energy = 1.1% Demand = 0.6%
Natural Gas Price Forecast	Gas: Base -30% Coal: Base -3%	Base	Gas: Base +30% Coal: Base	Base
Max DR/EE/DG Tech Potential	EE: - DR: 3 GW	EE: 1 GW DR: 4 GW	EE: 7 GW DR: 7 GW	EE: 1+ GW DR: 4+ GW + 2 GW storage
Renewables By Year 2031 (% Wind and Solar Energy)	10%	15%	26%	20%
Retirement	Coal: 9 GW Gas/Oil: 17 GW	Coal: 16 GW Gas/Oil: 17 GW	Coal: 24 GW Gas/Oil: 17 GW	Coal: 17 GW Gas/Oil: 17 GW Nuclear: 2.5 GW
CO2 Reduction Constraint From Current Levels by 2032	None	None	20%	None
Siting Methodology	MTEP Standard	MTEP Standard	MTEP Standard	Localized

Source: MISO September 27, 2017 Planning Advisory Committee


https://cdn.misoenergy.org/20170927%20PAC%20Item%2003d%20MTEP18%20Futures%20Results%20Review89925.pdf

Notable MTEP18 Congestion

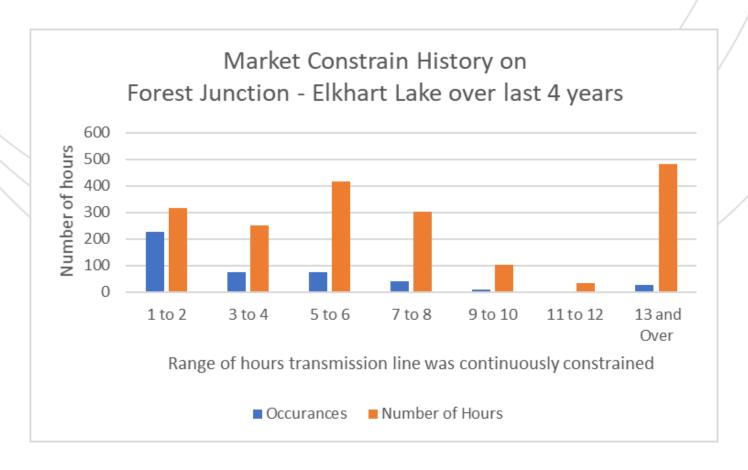
- Forest Junction Elkhart Lake 138 kV
- Butler Bluemound 138 kV
- Edgewater Saukville 345 kV
- Petenwell ACEC Badger Saratoga 138 kV
 - This has an SPS that mitigate constraint

Forest Junction – Elkhart Lake Update

- Reviewed various options
- Previous reviews did not account for entire length of line
- Options being investigated further
 - Uprate existing conductor to maximum temperature
 - Just under half the spans are limiting
 - More detailed review determines exact number to replace
 - Replace existing conductor with large conductor
 - Need to determine capability of towers
 - Reconfigure load on double circuit
 - Reconfiguration may lead to issues on parallel circuit
 - Need to address concerns with load being served from one line

Energy Storage

- Emerging Technology
- Numerous applications
 - Frequency response
 - Demand management
 - Mitigates intermittency of renewables
- Unclear ability to fully participate in energy market



Energy Market Assumptions for Energy Storage

- Functions as a load during charging
- Functions as a generator during discharging
 - Energy storage options incur losses
- To be effective must mitigate market congestion
 - Sizing
 - Discharge duration
 - Constraint mitigation happens when redispatch is not needed
- ATC reviewed historical market data
 - Determine what types of solutions that could work
 - Sorted data into groups of constraint duration by hour

Historical Forest Junction – Elkhart Lake Market Constraint

Historical Forest Junction – Elkhart Lake Market Constraint

- Higher occurrence of short duration constaints
- Over 80% of constrained hours happen in periods of 3 hours or longer
- Can available generation respond in post contingent dispatch in a fast enough time frame?
 - ATC to investigate response time and availability of generation
 - Generation dispatch dependent on many factors
- Can a discrete change to the system impact value of battery sizing?
 - New load
 - Generation retirement

Next Steps

Project / Analysis Development

- Detailed investigation into Forest Junction Elkhart Lake alternatives
- Investigate Granville-Bluemound alternatives
- Compile and answer additional stakeholder feedback
- Further investigation of energy storage

2018 Futures Development

- Continued Review of MISO MTEP18 Development
- Review of MISO PROMOD Models

Analysis of Projects

- Study Years 2027 and 2032
- Futures All MISO MTEP18 Futures

Timelines

- May 15: Finalize Assumptions
- November 15: Provide Analysis Update

Detailed MISO Futures Information

- MTEP18 Futures Development Summary
 - June Planning Advisory Presentation
- MTEP18 Resource Expansion and Siting Results
 - September Planning Advisory Presentation

Questions?

- ATC Economic Planning
- Dale Burmester
 - dburmester@atcllc.com
- Erik Winsand
 - ewinsand@atcllc.com

Thank You For Your Time!

