

Helping to keep the lights on, businesses running and communities strong

2018 10-Year Assessment Preliminary Study Design

October 24, 2017
Stakeholder and Customer Webcast
Jeremy Voigt, System Planning

atcllc.com

Purpose

- Summarize ATC's project development processes
- Solicit input for the 2018 Assessment Study Design
- Solicit input on Public Policy Requirements

ATC's Project Development Processes

- Local Transmission Planning
 - Asset Renewal
 - Interconnections
 - Network
 - Planning Reliability Criteria
 - Sectionalizing Guidelines
 - Economic Benefits Considerations
- Other Solution Considerations, including Distributed Energy Resources (DER)
- Regional Planning
- Public Policy Requirements

Timeline

Local Transmission Planning Process

Project Status

Strategic

Provisional

Proposed

Planned

In-Service

Asset Renewal Program Objectives

- Safety Public and worker
- Minimize total life cycle cost
- Compliance
- Manage risk of aging infrastructure
- Reliability performance improvements
- Environmental performance improvements

Asset Renewal Criteria

Safety/Compliance

Public and Worker Safety

NERC

NESC Clearances NESC Strengths

Reliability Performance

Historical Performance

Condition

Corporate Reliability Goals Industry Trends/Bad Actors

Asset Renewal Considerations

- Is the asset still needed?
 - Assess area needs
 - Obtain cross-functional and distribution provider input
 - Consider removal of lines (full/partial retirement)
- What ratings are needed?
- Investing prudently using defensible criteria

Asset Renewal Considerations – E-83/B-2

- ATC team and affected distribution provider assessed area needs
- Found potential for full or partial retirement
 - Option being considered: move substations nearby existing 138 kV lines
 - Evaluation in progress
 - Determining costs and distribution impacts
 - Preferred solution expected by 2018

Interconnections

- G-T
 - Support MISO Attachment X and Y Processes
- D-T
 - Collaboration with distribution providers through Load
 Interconnection Request Form (LIRF) and BVP process
- T-T
 - Collaboration with other Transmission Owners

Network Planning Objectives

- Compliance with NERC regional and local criteria
- Best Value Plan (BVP)
- Customer involvement
- Address Public Policy requirements
- Maintain or improve the adequacy and reliability of the electric transmission system

Network Planning Assessment Process

Planning Criteria & Assessment Practices

- NERC Standards, particularly <u>TPL-001</u>, version 4
- ATC Planning Criteria/Assessment Practices
 - <u>http://www.atc10yearplan.com</u> (About tab)
 - Updated to Planning Criteria v19 & Planning Assessment Practices v6
- Sectionalizing Guidelines
 - Developed with distribution providers early in ATC's history
 - http://www.atcllc.com/wp-content/uploads/2016/12/Final-Load-Interconnection-Guide-Rev-6-122116.pdf (Sections 3.6.1-3.6.2)

Planning Criteria & Assessment Practices Updates

Planning Criteria v19

- Added non-BES facilities in some parts of section 1.1.6
 General Steady State Performance Criteria
- Added section 1.6 Generating Facility Power Factor and Voltage Regulation

Planning Assessment Practices v6

- Added section 6 Facility Condition Methodology
- Added section 13.7 Other ATC Interconnection Studies and Considerations
- Added text to section 13.6.1 Generator Interconnection Studies regarding dispatch modeling assumptions, power factor and voltage schedule

2018 Studies and Assumptions

- Preliminary 2017 Load Forecast Confirmation and MTEP18 Support Studies
- Modeling Assumptions
 - Model Years
 - Load
 - Generation
 - No Load Loss Allowed Contingency Analysis
- Additional Studies

Preliminary Load Forecast and MTEP18 Support Studies

- Initial screening (reduced generator reactive capability)
 - Summer peak (5 and 10 year models)
 - 2017 load forecast
 - 2017 TYA outside world (2016 MMWG cases)
- To confirm 2017 Load Forecast and support MTEP18 database development
 - No load loss allowed contingencies
 - Completed July 2017

Projects Submitted to MTEP18

• MTEP18 Active Project List

2018 TYA Model Years

- 2018 (As-planned)
- 2019
- 2023
- 2028
- All models will likely be completed by the Spring of 2018

Load - Historical

- Requested September 27, 2017
 - Summer peak
 - Winter peak
 - Light load
 - Shoulder load
- Receive November 1, 2017
- Add to databases

Load – Expected Forecast

- Requested LDC forecasts February 2017
 - 11 years
 - Consistent with resource planning forecast
 - Considered expected (50/50 probability)
- Received in April 2017
- ATC compiles
 - Comparisons to previous forecasts
 - Differences confirmed with LDCs
 - Finalized copy to LDCs August 2017
 - Forecasted load is what the system is planned for

Load Forecast Trends

Load Forecast Trends, Continued

	ATC Load (MW)				
Model	2016	2017	2018		
	Assessment	Assessment	Assessment		
Year 1 Summer Peak	13,400	13,000	13,000		
Year 5 Summer Peak	+300	+300	+200		
Year 10 Summer Peak	+700	+600	+400		
Year 5 Shoulder 9,800		9,400	9,400		
Year 10 Shoulder	+300	+200	+100		

Generation Modeling

- Existing generator data
 - Annual updates requested from GOs in Q3 of each year
- Generation additions
 - Only add generators with signed interconnection agreements
 Additions modeled at MISO Facility study location
- Generation retirements
 - Generators with a completed MISO Attachment Y are modeled as retired, unless there is an SSR agreement
- Intact system and outage conditions

 Maintain voltage criteria for
 - - 90% maximum generator reactive power output
 - 90% minimum generator reactive power consumption

Generation Dispatch

- Local Balancing Area merit order dispatch:
 - Used for Assessment summer peak and shoulder models. Local Balancing Area dispatch from merit order provided by LBA
- ATC-wide merit order dispatch:
 - Minimum load models
 - ATC-wide merit order dispatch determined with PROMOD
- Generators without scheduled transactions:
 - If signed IA, generation included in the host Local Balancing Area.

No Load Loss Allowed Contingency Analysis

Peak

- 1, 5, and 10 year out models

Shoulder (firm)

- 5 and 10 year out models
- 70% load except for Zone 2 (90% load) and northern Zone 4 (80% load)
- Shoulder rating methodology

Minimum load

- 1 and 5 year out model
- 40% load

Additional Network Planning Studies

- Load Loss Allowed
- Existing Generator Stability Reviews
- Annual Fault Study
- High Bias Study
 - Identify next few limiters
 - Just informational

Other Solution Considerations

- Preliminary process developing with our stakeholders
- Two ways process can be initiated
 - Neéd initiated by local distribution provider
 - Identify T or D related reliability/service concerns
 - · Develop needs and solutions
 - Communicate with ATC to promote collaboration
 - Use existing D-T or G-T processes
 - Need initiated by ATC
 - 10-Year Assessment screening develop Needs/Limitations lists
 - Customers/stakeholders engage ATC with ideas
 - Collaborate to identify possible DER options from customers
 - Open project development discussions
 - Use modified BVP practices to balance comparison of appropriate alternatives

Needs Table Example (Sample)

Model	Planning Zone	Monitored Facility	Category	% of Facility Rating	% of Nominal Bus Voltage	Mitigation
2023 Peak	5	Port Washington - Saukville 138-kV line 742	P12	101.3%		2021 Port Washington - Saukville: Rebuild Line 762 to a double circuit
2023 Peak	⊢ ⊀	Portage - Columbia 138- kV line X-13	P12	103.3%		Transitional Rating until 2023 Cardinal - Hickory Creek 345-kV line construction
2023 Peak	4	Plymouth 4 138-kV Bus	P21		78%	Holland Substation, UVLS Relaying Addition
2023 Peak	4	Howards Grove 138-kV Bus	P21		81%	Holland Substation, UVLS Relaying Addition
2028 Peak	5	Port Washington - Saukville 138-kV line 752	P12	100.8%		2021 Port Washington - Saukville: Rebuild Line 762 to a double circuit
2028 Peak	5	Charter Industrial 138-kV Bus	P21		68%	Holland Substation, UVLS Relaying Addition
2028 Peak	4	Holland 138-kV Bus	P21		73%	Holland Substation, UVLS Relaying Addition

Regional Planning

- MTEP
 - Preliminary screening helps ATC to better prepare for upcoming MTEP cycle
- MISO Coordinated Seasonal Assessments
- ERAG/MMWG Seasonal Assessments
- RF Seasonal Assessments

Public Policy Requirements

- Following MISO Tariff (Attachment FF) Processes
- Previously identified requirements
 - State Renewable Portfolio Standard (RPS) mandates
 - EPA regulations
 - State mandates and goals for energy efficiency (EE) and demand side management (DSM) programs
- Any public policy requirements not identified in ATC or MISO processes?

Schedule

- Expected Load Forecast Done
- Criteria and Methodology Update Done
- Preliminary MTEP18 Support Study Done
- Post 2018 TYA Preliminary Study Design Done
- Stakeholder Study Design Meeting October 24, 2017
- Stakeholder Design Comments Due December 1, 2017
- Study Design Completion December 2017
- Model Development Completion March 2018
- Preliminary Needs Meeting March 1, 2018
- Preliminary Solutions Meeting May 3, 2018
- Document and Publish September 2018

Thank you for Participating

To provide solicited comments or for more information, please contact

Jeremy Voigt

Phone: 262-832-8742

Email: jvoigt@atcllc.com

By December 1, 2017

