

Helping to keep the lights on, businesses running and communities strong

EIPC Update

Flora Flygt, Strategic Planning & Policy Advisor February 16, 2015

atcllc.com

EIPC Study Approach: Non-DOE Work

• 2013 Work

- Create roll-up case of the Eastern Interconnection (2018, 2023)
- Perform gap analysis, identify any needed upgrades
- Increase transfers to test robustness of the system as planned
- 2014 Work: Scenario analysis
 - Scenario A: Updated base case
 - Scenario B: Heat Wave and Drought

EIPC Results: Non-DOE Work

Scenario A: Updated Base Case

- Assumptions included significant transmission additions in NY and updates from other Planning Coordinators
- "Gap analysis" identified potential constraints in MISO,PJM, TVA; they identified needed solutions
- Transfer analysis identified significant change in transfer capability in only one instance

Table 3: Changes in Transfer Limits

	ew	N	evious	Pr				
Delta	Lim. PA	FCITC (MW)	Lim. PA	FCITC (MW)	Sink		Source	
100	DEF	1700	DEF	1600	SERC	E	FRCC	A
-300	PENELEC	3100	PENELEC-PJM	3400	NPCC	С	MISO	В
0	N/A	>5000	N/A	>5000	РЛМ	D	MISO	В
0	N/A	>5000	N/A	>5000	SERC	Ε	MISO	В
0	EES	650	EES	650	SPP	F	MISO	В
-50	NYISO	1750	NYISO	1800	MISO	В	NPCC	C
-300	NYISO	1200	NYISO	1500	РЛМ	D	NPCC	С
50	ALTW	1650	ALTW-MISO	1600	MISO	В	РЛМ	D
750	NYISO	2850	PENELEC-PJM	2100	NPCC	С	РЛМ	D
0	N/A	>5000	N/A	>5000	SERC	Е	РЛМ	D
0	SBA/FRCC	1900	SBA/FRCC	1900	FRCC	Α	SERC	E
0	N/A	>5000	N/A	>5000	MISO	В	SERC	Е
2900	DVP	4800	BREC-MISO	1900	РЛМ	D	SERC	E
-50	SWPA-SPP	500	SWPA-SPP	550	SPP	F	SERC	E
-50	WERE	800	WERE-SPP	850	MISO	В	SPP	F
0	WERE	950	WERE-SPP	950	SERC	Е	SPP	F

Source: http://www.eipconline.com/uploads/FinalEIPC 2014 Study Report 01-23-15.pdf, p. 18

EIPC Results: Non-DOE Work

Scenario B: Heat Wave & Drought Additional 30,000 MWs from Source to Sink

Source Regions

- ISO New England
- New York ISO
- IESO (Ontario)
- PJM
- MISO
 North/Central
- Louisville Gas & Electric/KU
- MAPP

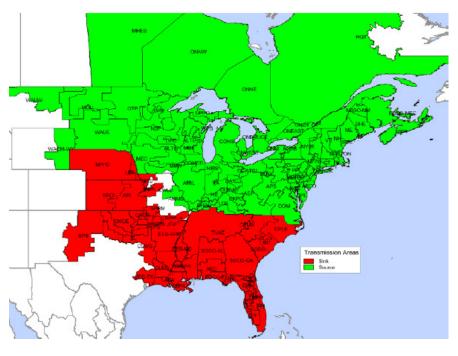
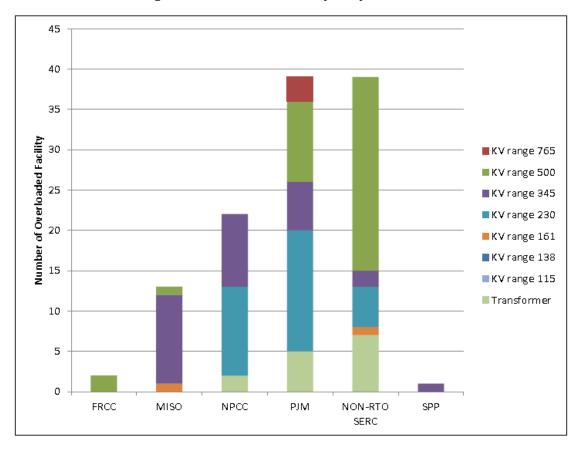


Figure 1 - Source and Sink Transmission Areas

Sink Regions


- MISO South
- Duke Energy: Carolinas, Progress and Florida
- SC Electric & Gas
- Santee Cooper
- TVA
- Power South Elec Cooperative
- Alcoa Power Generating
- Electric Energy, Inc.
- Florida Power and Light
- JEA
- SPP

EIPC Results: Non-DOE Work

- Majority of constraints in the SERC and PJM regions
- 77% of overloaded facilities internal to the regions; 23% tie lines
- MISO: ~90%/10% split – internal to tie lines

Figure 2: Overloaded Facilities by Study Area and kV

EIPC Gas-Electric Coordination Study

Background

- Post Phase II of the original EIPC study
- DOE requested that EIPC look at gas-electric coordination issues due to low gas prices and increased gas generation

Participating Planning Coordinators

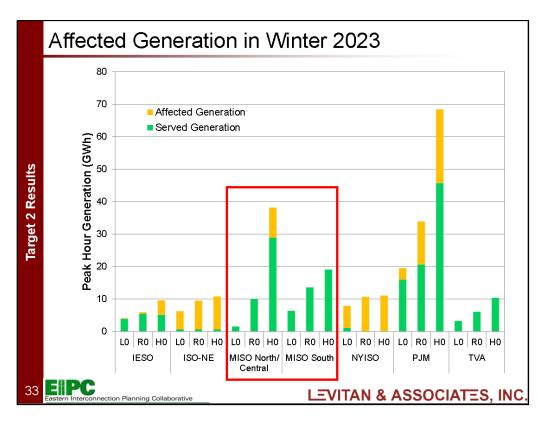
- ISO New England
- New York ISO
- PJM Interconnection
- MISO
- TVA
- Ontario's IESO

EIPC Gas-Electric Coordination Study

- Study years: 2018 and 2023
- Study targets
 - Develop baseline of the electric and natural gas systems, including planning, operation and interactions
 - 2. Determine adequacy of regional gas systems for next 5-10 years
 - 3. Identify contingencies on the gas and electric systems that could negatively affect the other
 - 4. Examine the pros and cons of dual fuel capability for generation versus expanding gas system

- Target 1: Baseline assessment – qualitative assessment of gas/electric interface
 - Addressed for each Planning Coordinator
 - Considered bulk power security and resource adequacy issues

Qualitative Assessment Matrix

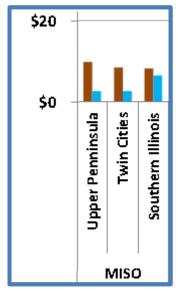

		Criterion	РЈМ	MISO	NYISO	ISO-NE	TVA	IESO
2	Natural Gas Supply	Gas Supply Portfolio Diversity						
les l		Pipeline Connectivity Level						
เสเยย า หยรมแร		Conventional Storage Deliverability						
		LNG Storage Capability						
sas-Electric Study –	Electric- Gas Interface	Firm Transportation Entitlements						
נווני		Direct Pipeline Connectivity						
18-18-18-18-18-18-18-18-18-18-18-18-18-1	Gas Tariff Impact on Electric Market	Pipeline or LDC Penalties						
Ď		LDC Provision of Flexible Service						
		Active Secondary Market						

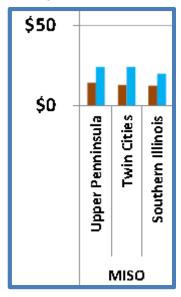
Eastern Interconnection Planning Collaborative

LEVITAN & ASSOCIATES, INC.

- Target 2: Determine adequacy of regional gas systems for next 5-10 years
- MISO
 - Gas infrastructure adequate under almost all market/generation conditions
 - Small transportation deficit in N/C when coal replaced by gas
 - Anticipated LNG commercialization in Gulf of Mexico does not increase constraints

- Target 3: Electric and gas contingency identification
 - Identify contingencies on the natural gas and electric systems
- Approach
 - Hydraulic modeling of selected areas
 - Identification of gas contingencies for study
 - Loss of supply, storage or compression and line breaks
 - Identification of electric contingencies for study
 - Bulk power system outage or loss of electric-drive compression
 - Identify top three to five gas and electric contingencies
 - Each Planning Coordinator area and study region as a whole
 - Identify possible mitigation measures
- Results available end of February 2015




- Target 4: Pros and Cons of Dual Fuel
- Primary findings
 - New gas-fired plants expected to use ultra low sulfur diesel (ULSD) as backup fuel
 - USLD supply chain is robust but this represents a major change in the distillate oil market
 - Air permits typically cap oil use to 720 hours; some have lower limits
 - At most locations (not MISO), dual fuel is less expensive than firm natural gas transportation

Levelized Annual Cost (\$/Kw-yr)

Combined Cycle Plants

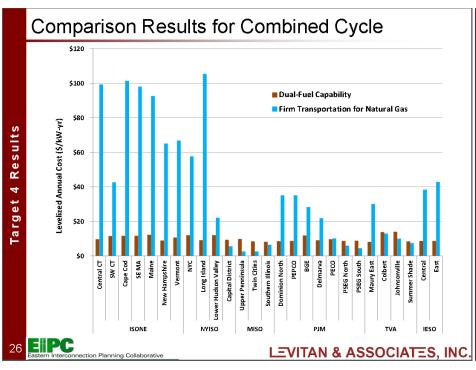
- Dual-Fuel Capability
- Firm Transportation for Natural Gas

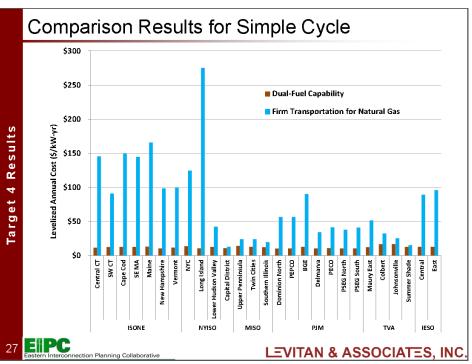
EIPC Gas-Electric Coordination Next Steps

- Target 2 report: comments due 2/27/15
- Target 3 report: draft public version available 2/27/15
- SSC webinar 3/3/15
- Final draft Target 2 report to DOE 3/13/15
- Target 3 report: comments due 3/13/15
- Final draft Target 3 report to DOE 3/27/15
- Draft revision to Phase II report and discussion: May 2015
- Phase II revised report: comments due 6/3/15
- Phase II revised report to DOE and comments: June 2015
- End of project: 7/17/15

More EIPC Information

http://www.eipconline.com/


or
Flora Flygt


fflygt@atcllc.com

608-877-3660

Appendix – EIPC Gas-Electric Coordination Study: Target 4 Results

